Skip to main content
Log in

A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Cobalt oxyhydroxide (CoOOH) nanosheets are efficient fluorescence quenchers due to their specific optical properties and high surface area. The combination of CoOOH nanosheets and carbon dots (CDs) has not been used in any aptasensor based on fluorescence quenching so far. An aptamer based fluorometric assay is introduced that is making use of fluorescent CDs conjugated to the aptamer against methamphetamine (MTA), and of CoOOH nanosheets which reduce the fluorescence of the CDs as a quencher. The results revealed that the conjugated CDs with aptamers were able to enclose the CoOOH nanosheets. Consequently, fluorescence is quenched. If the aptamer on the CD binds MTA, the CDs are detached from CoOOH nanosheets. As a result, fluorescence is restored proportionally to zhe MTA concentration. The fluorometric limit of detection is 1 nM with a dynamic range from 5 to 156 nM. The method was validated by comparing the results obtained by the new method to those obtained by ion mobility spectroscopy. Theoretical studies showed that the distance between CoOOH nanosheet and C-Ds is approximately 7.6 Å which can illustrate the possibility of FRET phenomenon. The interactions of MTA and the aptamer were investigated using molecular dynamic simulation (MDS).

Carbon dots (C-Ds) were prepared from grape leaves, conjugated to aptamer, and adsorbed on CoOOH nanosheets. So, the fluorescence of C-Ds is quenched. On addition of MTA, fluorescence is restored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hassanzadeh J, Khataee A, Lotfi R (2017) Sensitive fluorescence and chemiluminescence procedures for methamphetamine detection based on CdS quantum dots. Microchem J 132:371–377

    Article  CAS  Google Scholar 

  2. Rouhani S, Haghgoo S (2015) A novel fluorescence nanosensor based on 1, 8-naphthalimide-thiophene doped silica nanoparticles, and its application to the determination of methamphetamine. Sensors Actuators B Chem 209:957–965

    Article  CAS  Google Scholar 

  3. Rafiee B, Fakhari AR, Ghaffarzadeh M (2015) Impedimetric and stripping voltammetric determination of methamphetamine at gold nanoparticles-multiwalled carbon nanotubes modified screen printed electrode. Sensors Actuators B Chem 218:271–279

    Article  CAS  Google Scholar 

  4. Djozan D, Farajzadeh MA, Sorouraddin SM, Baheri T (2012) Determination of methamphetamine, amphetamine and ecstasy by inside-needle adsorption trap based on molecularly imprinted polymer followed by GC-FID determination. Microchim Acta 179:209–217

    Article  CAS  Google Scholar 

  5. Du P, Li K, Li J, Xu Z, Fu X, Yang J et al (2015) Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res 84:76–84

    Article  CAS  PubMed  Google Scholar 

  6. Woźniak MK, Wiergowski M, Aszyk J, Kubica P, Namieśnik J, Biziuk M (2018) Application of gas chromatography–tandem mass spectrometry for the determination of amphetamine-type stimulants in blood and urine. J Pharm Biomed Anal 148:58–64

    Article  CAS  PubMed  Google Scholar 

  7. Wang R, Qi X, Liu S, Zhao L, Lu L, Deng Y (2016a) Ionic liquid-based fluorescence sensing paper: rapid, ultrasensitive, and in-site detection of methamphetamine in human urine. RSC Adv 6:52372–52376

    Article  CAS  Google Scholar 

  8. Lian R, Wu Z, Lv X, Rao Y, Li H, Li J, Wang R, Ni C, Zhang Y (2017) Rapid screening of abused drugs by direct analysis in real time (DART) coupled to time-of-flight mass spectrometry (TOF-MS) combined with ion mobility spectrometry (IMS). Forensic Sci Int 279:268–280

    Article  CAS  PubMed  Google Scholar 

  9. Yang Y, Cen Y, Deng WJ, Yu RQ, Chen TT, Chu X (2016) An aptasensor based on cobalt oxyhydroxide nanosheets for the detection of thrombin. Anal Methods 8:7199–7203

    Article  CAS  Google Scholar 

  10. Li G, Kong W, Zhao M, Lu S, Gong P, Chen G, Xia L, Wang H, You J, Wu Y (2016) A fluorescence resonance energy transfer (FRET) based “turn-on” nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Biosens Bioelectron 79:728–735

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 7:40973–40989

    Article  CAS  Google Scholar 

  12. Shamsipur M, Barati A, Karami S (2017) Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 124:429–472

    Article  CAS  Google Scholar 

  13. Sun C, Zhang Y, Wang P, Yang Y, Wang Y, Xu J, Wang Y, Yu WW (2016) Synthesis of nitrogen and sulfur co-doped carbon dots from garlic for selective detection of Fe3+. Nanoscale Res Lett 11:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S (2013) Green synthesis of carbon dots with down-and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138:6551–6557

    Article  CAS  PubMed  Google Scholar 

  15. Zhu C, Zhai J, Dong S (2012) Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369

    Article  CAS  Google Scholar 

  16. Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M (2016b) Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem Eng J 300:75–82

    Article  CAS  Google Scholar 

  17. Mandani S, Dey D, Sharma B, Sarma TK (2017) Natural occurrence of fluorescent carbon dots in honey. Carbon 119:569–572

    Article  CAS  Google Scholar 

  18. Zhou J, Sheng Z, Han H, Zou M, Li C (2012) Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 66:222–224

    Article  CAS  Google Scholar 

  19. Hong P, Li W, Li J (2012) Applications of aptasensors in clinical diagnostics. Sensors 12:1181–1193

    Article  CAS  PubMed  Google Scholar 

  20. Qi Y, Xiu FR, Yu G, Huang L, Li B (2017) Simple and rapid chemiluminescence aptasensor for Hg 2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron 87:439–446

    Article  CAS  PubMed  Google Scholar 

  21. Kang Z, Liu Y, Lee ST (2017) Carbon dots for bioimaging and biosensing applications. In: Springer Series on Chemical Sensors and Biosensors (Methods and Applications). Springer, Heidelberg

  22. Sun F, Wang Z, Feng Y, Cheng Y, Ju H, Quan Y (2018) Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing. Biosens Bioelectron 100:28–34

    Article  CAS  PubMed  Google Scholar 

  23. Shi Q, Shi Y, Pan Y, Yue Z, Zhang H, Yi C (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511. https://doi.org/10.1007/s00604-014-1349-8

    Article  CAS  Google Scholar 

  24. Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P, Soltysinski T et al (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res e63:44

    Google Scholar 

  25. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct Funct Bioinf 65:712–725

    Article  CAS  Google Scholar 

  26. SchuÈttelkopf AW, Van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363

    Article  CAS  Google Scholar 

  27. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8:127–134

    Article  CAS  Google Scholar 

  28. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  29. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837

    Article  CAS  Google Scholar 

  30. Barati A, Shamsipur M, Arkan E, Hosseinzadeh L, Abdollahi H (2015) Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology. Mater Sci Eng C 47:325–332

    Article  CAS  Google Scholar 

  31. Choudhary R, Patra S, Madhuri R, Sharma PK (2017) Designing of carbon based fluorescent nanosea-urchin via green-synthesis approach for live cell detection of zinc oxide nanoparticle. Biosens Bioelectron 91:472–481

    Article  CAS  PubMed  Google Scholar 

  32. Jagadale A, Dubal D, Lokhande C (2012) Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Mater Res Bull 47:672–676

    Article  CAS  Google Scholar 

  33. Wu RJ, Wu JG, Tsai TK, Yeh CT (2006) Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures. Sensors Actuators B Chem 120:104–109

    Article  CAS  Google Scholar 

  34. Zargar T, Khayamian T, Jafari MT (2018) Aptamer-modified carbon nanomaterial based sorption coupled to paper spray ion mobility spectrometry for highly sensitive and selective determination of methamphetamine. Microchim Acta 185:103

    Article  CAS  Google Scholar 

  35. Kohzadi R, Molaeirad A, Alijanianzadeh M, Kamali N, Mohtashamifar M (2016) Designing a label free aptasensor for detection of methamphetamine, biomacromolecular. Journal 2:15–20

    Google Scholar 

  36. Kimura H, Matsumoto K, Mukaida M (2005) Rapid and simple quantitation of methamphetamine by using a homogeneous time-resolved fluoroimmunoassay based on fluorescence resonance energy transfer from europium to Cy5. J Anal Toxicol 29:799–804

    Article  CAS  PubMed  Google Scholar 

  37. Xu B, Ye Y, Liao L (2016) Detection of methamphetamine and morphine in urine and saliva using excitation–emission matrix fluorescence and a second-order calibration algorithm. J Appl Spectrosc 83:383–391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberi, Z., Rezaei, B., Faroukhpour, H. et al. A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Microchim Acta 185, 303 (2018). https://doi.org/10.1007/s00604-018-2842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2842-2

Keywords

Navigation