Microchimica Acta

, 185:296 | Cite as

Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure

  • Arash Jalili Ghazizadeh
  • Abbas Afkhami
  • Hasan Bagheri
Original Paper


A nanostructured material of the type Au-ZnO-SiO2 is described that consists of ZnO and gold nanoparticles (NPs) dispersed into a silica matrix and used to construct a voltammetric sensor for 4-nitrophenol. The AuNPs and ZnO NPs are anchored onto the silica network which warrants the nanostructures to be stable in various environments. It also facilitates the electron transfer between the electrolyte and the glassy carbon electrode (GCE). The properties of the nanostructure as a modifier for the GCE were investigated by energy dispersive spectrometry, X-ray diffraction spectroscopy, and transmission electron microscopy. It is shown that the nanostructure increases the surface area. Hence, the cathodic and anodic current in differential pulse voltammetry of 4-nitrophenol are considerably enhanced in comparison to a bare GCE. Under optimum conditions, the currents for oxidation and reduction are proportional to the concentration of 4-nitrophenol in the 0.05–3.5 μM and 0.01–1.2 μM concentration ranges, with 13.7 and 2.8 nM detection limits, respectively. The sensor has excellent sensitivity, fast response, long-term stability, and good reproducibility. It is perceived to be a valuable tool for monitoring 4-nitrophenol in real water samples.

Graphical abstract

Schematic of voltammetric sensor for 4-nitrophenol.

It is based on GCE modified with gold-ZnO-SiO2 nanostructure. It exhibited the improvement in performance for both oxidation and reduction peaks in terms of linearity, concentration range, detection limit, and sensitivity.


Electrochemical sensors 4-Nitrophenol ZnO-Au nanoparticles Hazardous materials Modified electrodes 



The authors gratefully acknowledge the support provided by the Research Council of Baqiyatallah University of Medical Sciences.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2840_MOESM1_ESM.docx (784 kb)
ESM 1 (DOCX 784 kb)


  1. 1.
    Yang C (2004) Electrochemical determination of 4-nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode. Microchim Acta 148(1–2):87–92Google Scholar
  2. 2.
    Wang P, Xiao J, Liao A, Li P, Guo M, Xia Y, Li Z, Jiang X, Huang W (2015) Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim Acta 176:448–455CrossRefGoogle Scholar
  3. 3.
    Al MF, Mo'ayyad S, Ahmad S, Mohammad A-S (2008) Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds. J Environ Sci 20(6):675–682CrossRefGoogle Scholar
  4. 4.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefPubMedGoogle Scholar
  5. 5.
    Mittal A, Gupta V, Malviya A, Mittal J (2008) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil yellow) by adsorption over waste materials (bottom ash and De-oiled soya). J Hazard Mater 151(2–3):821–832CrossRefPubMedGoogle Scholar
  6. 6.
    Gong J, Wang X, Li X, Wang K (2012) Highly sensitive visible light activated photoelectrochemical biosensing of organophosphate pesticide using biofunctional crossed bismuth oxyiodide flake arrays. Biosens Bioelectron 38(1):43–49CrossRefPubMedGoogle Scholar
  7. 7.
    Hou F, Deng T, Jiang X (2013) Dispersive liquid-liquid microextraction of phenolic compounds using solidified floating organic droplets, and their determination by HPLC. Microchim Acta 180(5–6):341–346CrossRefGoogle Scholar
  8. 8.
    Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182(1–2):51–59CrossRefGoogle Scholar
  9. 9.
    Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183(7):2197–2203CrossRefGoogle Scholar
  10. 10.
    Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B (1999) Determination of toxic nitrophenols in the atmosphere by high-performance liquid chromatography. J Chromatogr A 846(1–2):277–281CrossRefGoogle Scholar
  11. 11.
    Thirumalraj B, Rajkumar C, Chen S-M, Lin K-Y (2017) Determination of 4-nitrophenol in water by use of a screen-printed carbon electrode modified with chitosan-crafted ZnO nanoneedles. J Colloid Interface Sci 499:83–92CrossRefPubMedGoogle Scholar
  12. 12.
    Li C, Wu Z, Yang H, Deng L, Chen X (2017) Reduced graphene oxide-cyclodextrin-chitosan electrochemical sensor: effective and simultaneous determination of o-and p-nitrophenols. Sensors Actuators B Chem 251:446–454CrossRefGoogle Scholar
  13. 13.
    Dinesh B, Saraswathi R (2017) Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensors Actuators B Chem 253:502–512CrossRefGoogle Scholar
  14. 14.
    Liao A, Li P, Zhang H, Guo M, Xia Y, Li Z, Huang W (2017) Highly sensitive determination of 4-Nitrophenol at a Nafion modified glass carbon Nanofilm electrode. J Electrochem Soc 164(2):H63–H69CrossRefGoogle Scholar
  15. 15.
    Ikhsan NI, Rameshkumar P, Huang NM (2016) Controlled synthesis of reduced graphene oxide supported silver nanoparticles for selective and sensitive electrochemical detection of 4-nitrophenol. Electrochim Acta 192:392–399CrossRefGoogle Scholar
  16. 16.
    Devadas B, Rajkumar M, Chen S-M, Yeh P-C (2014) A novel voltammetric p-nitrophenol sensor based on ZrO 2 nanoparticles incorporated into a multiwalled carbon nanotube modified glassy carbon electrode. Anal Methods 6(13):4686–4691CrossRefGoogle Scholar
  17. 17.
    Yang L, Zhao H, Li Y, Li C-P (2015) Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized au@ graphene nanohybrids. Sensors Actuators B Chem 207:1–8CrossRefGoogle Scholar
  18. 18.
    Wei T, Huang X, Zeng Q, Wang L (2015) Simultaneous electrochemical determination of nitrophenol isomers with the polyfurfural film modified glassy carbon electrode. J Electroanal Chem 743:105–111CrossRefGoogle Scholar
  19. 19.
    Deng P, Xu Z, Feng Y, Li J (2012) Electrocatalytic reduction and determination of p-nitrophenol on acetylene black paste electrode coated with salicylaldehyde-modified chitosan. Sensors Actuators B Chem 168:381–389CrossRefGoogle Scholar
  20. 20.
    Arvinte A, Mahosenaho M, Pinteala M, Sesay A-M, Virtanen V (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174(3–4):337–343CrossRefGoogle Scholar
  21. 21.
    Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169(1–2):87–92CrossRefGoogle Scholar
  22. 22.
    Giribabu K, Haldorai Y, Rethinasabapathy M, Jang S-C, Suresh R, Cho W-S, Han Y-K, Roh C, Huh YS, Narayanan V (2017) Glassy carbon electrode modified with poly (methyl orange) as an electrochemical platform for the determination of 4-nitrophenol at nanomolar levels. Curr Appl Phys 17(8):1114–1119CrossRefGoogle Scholar
  23. 23.
    Rao H, Guo W, Hou H, Wang H, Yin B, Xue Z, Zhao G (2017) Electroanalytical investigation of p-nitrophenol with dual electroactive groups on a reduced graphene oxide modified glassy carbon electrode. Int J Electrochem Sci 12(2):1052–1063CrossRefGoogle Scholar
  24. 24.
    L-q L, X-l Z, Y-p D, Q-s W (2008) Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors Actuators B Chem 135(1):61–65CrossRefGoogle Scholar
  25. 25.
    Huang W, Yang C, Zhang S (2003) Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode. Anal Bioanal Chem 375(5):703–707CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Z, Ma X, Zhang H, Lu W, Ma H, Hou S (2012) Simultaneous determination of Nitrophenol isomers based on β-Cyclodextrin functionalized reduced graphene oxide. Electroanalysis 24(5):1178–1185CrossRefGoogle Scholar
  27. 27.
    Chu L, Han L, Zhang X (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41(6):687–694CrossRefGoogle Scholar
  28. 28.
    Luz RCS, Damos FS, de Oliveira AB, Beck J, Kubota LT (2004) Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 64(4):935–942CrossRefGoogle Scholar
  29. 29.
    El Mhammedi M, Achak M, Bakasse M, Chtaini A (2009) Electrochemical determination of Para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. J Hazard Mater 163(1):323–328CrossRefPubMedGoogle Scholar
  30. 30.
    Sun W, Yang MX, Jiang Q, Jiao K (2008) Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin Chem Lett 19(10):1156–1158CrossRefGoogle Scholar
  31. 31.
    Alizadeh T, Ganjali MR, Norouzi P, Zare M, Zeraatkar A (2009) A novel high selective and sensitive Para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode. Talanta 79(5):1197–1203CrossRefPubMedGoogle Scholar
  32. 32.
    Li S, Du D, Huang J, Tu H, Yang Y, Zhang A (2013) One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst 138(9):2761–2768CrossRefPubMedGoogle Scholar
  33. 33.
    Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54(1):115–123CrossRefPubMedGoogle Scholar
  34. 34.
    Brida D, Fortunato E, Águas H, Silva V, Marques A, Pereira L, Ferreira I, Martins R (2002) New insights on large area flexible position sensitive detectors. J Non-Cryst Solids 299:1272–1276CrossRefGoogle Scholar
  35. 35.
    Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16(25):R829–R858CrossRefGoogle Scholar
  36. 36.
    Suchea M, Christoulakis S, Moschovis K, Katsarakis N, Kiriakidis G (2006) ZnO transparent thin films for gas sensor applications. Thin Solid Films 515(2):551–554CrossRefGoogle Scholar
  37. 37.
    Evgenidou E, Fytianos K, Poulios I (2005) Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl Catal B Environ 59(1–2):81–89CrossRefGoogle Scholar
  38. 38.
    Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chen J-C, Tang C-T (2007) Preparation and application of granular ZnO/Al2O3 catalyst for the removal of hazardous trichloroethylene. J Hazard Mater 142(1–2):88–96CrossRefPubMedGoogle Scholar
  40. 40.
    Li P, Wei Z, Wu T, Peng Q, Li Y (2011) Au− ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133(15):5660–5663CrossRefPubMedGoogle Scholar
  41. 41.
    Xie J, Wu Q (2010) One-pot synthesis of ZnO/ag nanospheres with enhanced photocatalytic activity. Mater Lett 64(3):389–392CrossRefGoogle Scholar
  42. 42.
    Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim Acta 181(15–16):1843–1850CrossRefGoogle Scholar
  43. 43.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefPubMedGoogle Scholar
  44. 44.
    Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262CrossRefPubMedGoogle Scholar
  45. 45.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yamada T, Zhou HS, Uchida H, Tomita M, Ueno Y, Ichino T, Honma I, Asai K, Katsube T (2002) Surface Photovoltage NO gas sensor with properties dependent on the structure of the self-ordered mesoporous silicate film. Adv Mater 14(11):812–815CrossRefGoogle Scholar
  47. 47.
    Kim J, Lee JE, Lee J, Yu JH, Kim BC, An K, Hwang Y, Shin C-H, Park J-G, Kim J (2006) Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J Am Chem Soc 128(3):688–689CrossRefPubMedGoogle Scholar
  48. 48.
    Olteanu NL, Rogozea EA, Popescu SA, Petcu AR, Lazăr CA, Meghea A, Mihaly M (2016) “One-pot” synthesis of au–ZnO–SiO2 nanostructures for sunlight photodegradation. J Mol Catal A Chem 414:148–159CrossRefGoogle Scholar
  49. 49.
    Mihaly M, Comanescu AF, Rogozea AE, Vasile E, Meghea A (2011) NiO–silica based nanostructured materials obtained by microemulsion assisted sol–gel procedure. Mater Res Bull 46(10):1746–1753CrossRefGoogle Scholar
  50. 50.
    Mihaly M, Fleancu MC, Olteanu NL, Bojin D, Meghea A, Enachescu M (2012) Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. Comptes Rendus Chimie 15(11–12):1012–1021CrossRefGoogle Scholar
  51. 51.
    Wang P, Xiao J, Guo M, Xia Y, Li Z, Jiang X, Huang W (2015) Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. J Electrochem Soc 162(1):H72–H78CrossRefGoogle Scholar
  52. 52.
    Bard A, Faulkner L, Leddy J, Zoski C (1980) Electrochemical methods: fundamentals and applications (vol. 2). Wiley, New YorkGoogle Scholar
  53. 53.
    Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater Sci Eng C 35:8–14CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Arash Jalili Ghazizadeh
    • 1
  • Abbas Afkhami
    • 2
  • Hasan Bagheri
    • 3
  1. 1.Department of Chemical Engineering, Faculty of Engineering, North Tehran BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of ChemistryBu-Ali Sina UniversityHamedanIran
  3. 3.Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran

Personalised recommendations