Advertisement

Microchimica Acta

, 185:299 | Cite as

Double signal enhancement strategy based on rolling circle amplification and photoinduced electron transfer for ultrasensitive fluorometric detection of methylated DNA

  • Pingdan Yan
  • Yixiong Hao
  • Zhaoche Shu
  • Chunling Gu
  • Xiaomei Zhou
  • Xiaoyu Liu
  • Hua Xiang
Original Paper
  • 89 Downloads

Abstract

The authors describe a novel assay for the detection of methylated DNA site. Rolling circle amplification and CdSe/ZnS quantum dots with high fluorescence efficiency are applied in this method. The CdSe/ZnS quantum dots act as electron donors, and hemin and oxygen (derived from hydrogen peroxide act as acceptors in photoinduced electron transfer. The assay, best performed at excitation/emission peaks of 450/620 nm, is sensitive and specific. Fluorometric response is linear in the 1 pM to 100 nM DNA concentration range, and the lowest detectable concentration of methylated DNA is 142 fM (S/N = 3). The method is capable of recognizing 0.01% methylated DNA in a mixture of methylated/unmethylated DNA.

Graphical abstract

A novel method for methylated sites detection in DNA is established. Rolling circle amplification and photoinduced electron transfer. CdSe/ZnS quantum dots with high fluorescence efficiency act as the electron donor, while G-quadruplex/hemin and hydrogen peroxide derived oxygen act as electron acceptor. It presents a linear response towards 1 pM to 100 nM methylated DNA with a correlation coefficient of 0.9968, and the lowest detectable concentration of methylated DNA was 142 fM, with selectivity significantly superior to other methods.

Keywords

Quantum dots p16 gene Fluorescence quenching Isothermal amplification G-quadruplex/hemin DNAzyme DNA methylation 

Notes

Acknowledgements

This work was financially supported by the Chongqing Municipal Education Commission science and technology research project Foundation of China (KJ1400211).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2839_MOESM1_ESM.docx (295 kb)
ESM 1 (DOCX 295 kb)

References

  1. 1.
    Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213.  https://doi.org/10.1038/321209a0 CrossRefGoogle Scholar
  2. 2.
    Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210(4470):604–610.  https://doi.org/10.1126/science.6254144 CrossRefGoogle Scholar
  3. 3.
    Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549.  https://doi.org/10.1038/ng1781 CrossRefGoogle Scholar
  4. 4.
    Weitz J, Koch M, Debus J, Höhler T, Galle PR, Büchler MW (2005) Colorectal cancer. Lancet 365(9454):153–165.  https://doi.org/10.1016/S0140-6736(05)17706-X CrossRefGoogle Scholar
  5. 5.
    Derks S, Lentjes MHFM, Hellebrekers DMEI, Bruïne APD, Herman JG, Engeland MV (2004) Methylation-specific PCR unraveled. Cell Oncol 26(5–6):291–299.  https://doi.org/10.1155/2004/370301 Google Scholar
  6. 6.
    Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, Danenberg PV, Laird PW (2000) MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res 28(8):E32CrossRefGoogle Scholar
  7. 7.
    Aiala L, Wolf M, Edurne U, Paula L, Andreas VD, Castresana JS (2008) Detection of methylation in promoter sequences by melting curve analysis-based semiquantitative real time PCR. BMC Cancer 8(1):61CrossRefGoogle Scholar
  8. 8.
    von Kanel T, Gerber D, Schaller A, Baumer A, Wey E, Jackson CB, Gisler FM, Heinimann K, Gallati S (2010) Quantitative 1-step DNA methylation analysis with native genomic DNA as template. Clin Chem 56(7):1098–1106.  https://doi.org/10.1373/clinchem.2009.142828 CrossRefGoogle Scholar
  9. 9.
    Leakey TI, Zielinski J, Siegfried RN, Siegel ER, Fan CY, Cooney CA (2008) A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res 36(11):e64–e64CrossRefGoogle Scholar
  10. 10.
    Su J, Yan H, Wei Y, Liu H, Liu H, Wang F, Lv J, Wu Q, Zhang Y (2012) CpG_MPs: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res 41(1):e4CrossRefGoogle Scholar
  11. 11.
    Schatz P, Distler J, Berlin K, Schuster M (2006) Novel method for high throughput DNA methylation marker evaluation using PNA-probe library hybridization and MALDI-TOF detection. Nucleic Acids Res 34(8):e59CrossRefGoogle Scholar
  12. 12.
    Van dBD, Ehrich M (2009) Mass spectrometric analysis of cytosine methylation by base-specific cleavage and primer extension methods. Methods Mol Biol 507(507):207–227Google Scholar
  13. 13.
    Teerlink T (2007) HPLC analysis of ADMA and other methylated L-arginine analogs in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 851(1–2):21–29CrossRefGoogle Scholar
  14. 14.
    Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92(10):4641–4645.  https://doi.org/10.1073/pnas.92.10.4641 CrossRefGoogle Scholar
  15. 15.
    Qian X, Lloyd RV (2003) Recent developments in signal amplification methods for in situ hybridization. Diagn Mol Pathol 12(1):1–13CrossRefGoogle Scholar
  16. 16.
    Bi S, Li L, Zhang S (2010) Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem 82(22):9447–9454CrossRefGoogle Scholar
  17. 17.
    Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 2:1–8Google Scholar
  18. 18.
    Zhou Y, Li B, Wang M, Wang J, Yin H, Ai S (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184(11):4359–4365CrossRefGoogle Scholar
  19. 19.
    Redl FX, Cho KS, Murray CB, O'Brien S (2003) Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423(6943):968–971.  https://doi.org/10.1038/nature01702 CrossRefGoogle Scholar
  20. 20.
    Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408(2):557–566.  https://doi.org/10.1007/s00216-015-9132-1 CrossRefGoogle Scholar
  21. 21.
    Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574.  https://doi.org/10.1021/acs.chemrev.5b00321 CrossRefGoogle Scholar
  22. 22.
    Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile and fluorescence imaging biosensors. Chem Soc Rev 44(14):4792–4834.  https://doi.org/10.1039/C4CS00532E CrossRefGoogle Scholar
  23. 23.
    Bailey VJ, Easwaran H, Zhang Y, Griffiths E, Belinsky SA, Herman JG, Baylin SB, Carraway HE, Wang TH (2009) MS-qFRET: a quantum dot-based method for analysis of DNA methylation. Genome Res 19(8):1455–1461.  https://doi.org/10.1101/gr.088831.108 CrossRefGoogle Scholar
  24. 24.
    Yuan R, Yu X, Zhang Y, Xu L, Cheng W, Tu Z, Ding S (2017) Target-triggered DNA nanoassembly on quantum dots and DNAzyme-modulated double quenching for ultrasensitive microRNA biosensing. Biosens Bioelectron 92:342–348CrossRefGoogle Scholar
  25. 25.
    Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, Tang D (2016) CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Biosens Bioelectron 87:18.  https://doi.org/10.1016/j.bios.2016.08.003 CrossRefGoogle Scholar
  26. 26.
    Chen L, Xia N, Li T, Bai Y, Chen X (2016) Aptasensor for visual and fluorometric determination of lysozyme based on the inner filter effect of gold nanoparticles on CdTe quantum dots. Microchim Acta 183(11):1–7Google Scholar
  27. 27.
    Freeman R, Liu X, Willner I (2011) Chemiluminescent and Chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604.  https://doi.org/10.1021/ja202639m CrossRefGoogle Scholar
  28. 28.
    Sharon E, Freeman R, Willner I (2010) CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal Chem 82(17):7073–7077CrossRefGoogle Scholar
  29. 29.
    de Silva AP, Moody TS, Wright GD (2009) Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 134(12):2385–2393.  https://doi.org/10.1039/b912527m CrossRefGoogle Scholar
  30. 30.
    Liu S, Pang S, Na W, Su X (2014) Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens Bioelectron 55(15):249–254CrossRefGoogle Scholar
  31. 31.
    Zhang L, Lei J, Liu L, Li C, Ju H (2013) Self-assembled DNA hydrogel as switchable material for aptamer-based fluorescent detection of protein. Anal Chem 85(22):11077–11082.  https://doi.org/10.1021/ac4027725 CrossRefGoogle Scholar
  32. 32.
    Frommer M, Mcdonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831.  https://doi.org/10.1073/pnas.89.5.1827 CrossRefGoogle Scholar
  33. 33.
    Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron 73:108–113.  https://doi.org/10.1016/j.bios.2015.05.062 CrossRefGoogle Scholar
  34. 34.
    Daneshpour M, Moradi LS, Izadi P, Omidfar K (2016) Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 77:1095–1103.  https://doi.org/10.1016/j.bios.2015.11.007 CrossRefGoogle Scholar
  35. 35.
    Zhu G, Yang K, Zhang CY (2013) Sensitive detection of methylated DNA using the short linear quencher-fluorophore probe and two-stage isothermal amplification assay. Biosens Bioelectron 49:170–175.  https://doi.org/10.1016/j.bios.2013.05.009 CrossRefGoogle Scholar
  36. 36.
    Yin H, Huang X, Ma W, Xu L, Zhu S, Kuang H, Xu C (2014) Ligation chain reaction based gold nanoparticle assembly for ultrasensitive DNA detection. Biosens Bioelectron 52:8–12.  https://doi.org/10.1016/j.bios.2013.07.064 CrossRefGoogle Scholar
  37. 37.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826CrossRefGoogle Scholar
  38. 38.
    Feng F, Wang H, Han L, Wang S (2008) Fluorescent conjugated polyelectrolyte as an indicator for convenient detection of DNA methylation. J Am Chem Soc 130(34):11338–11343CrossRefGoogle Scholar
  39. 39.
    Tost J, Schatz P, Schuster M, Berlin K, Gut IG (2003) Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res 31(9):e50CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Pingdan Yan
    • 1
  • Yixiong Hao
    • 1
  • Zhaoche Shu
    • 1
  • Chunling Gu
    • 1
  • Xiaomei Zhou
    • 1
  • Xiaoyu Liu
    • 1
  • Hua Xiang
    • 1
  1. 1.Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory MedicineChongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations