Microchimica Acta

, 185:297 | Cite as

Amperometric determination of As(III) and Cd(II) using a platinum electrode modified with acetylcholinesterase, ruthenium(II)-tris(bipyridine) and graphene oxide

  • Manju Bhargavi Gumpu
  • Murugan Veerapandian
  • Uma Maheswari Krishnan
  • John Bosco Balaguru Rayappan
Original Paper


The authors describe an amperometric biosensor for the determination As(III) and Cd(II) based on the inhibition of the enzyme acetylcholineesterase (AChE). A platinum electrode was modified with ruthenium(II)-tris(bipyridyl), graphene oxide and AChE and then showed redox peaks at 0.06 and 0.2 V vs Ag/AgCl in the presence of acetylthiocholine chloride (ATChCl). Amperometry unveiled a steady-state turnover rate with the release of thiocholine. In the presence of arsenic(III) and cadmium(II), AChE showed an inhibitive response at 0.214 and 0.233 V vs Ag/AgCl, respectively. The electrode exhibits a detection limit and linear range of 0.03 μM and 0.05–0.8 μM for As(III) and 0.07 μM and 0.02–0.7 μM for Cd(II), respectively. Type of inhibition and inhibition constants induced by As(III) and Cd(II) on the catalytic sites of AChE were determined from Dixon and Lineweaver-Burk plots. The modified electrode was applied to the determination of As3+ and Cd2+ in river, tap and waste water, and the results proved that the method is sensitive and can be an alternative to chromatographic and spectroscopic techniques.

Graphical abstract

Schematic presentation of Pt/Ru(II)-tris(bipy)-GO/AChE electrode in absence and presence of metal ions (As3+/Cd2+).


Biosensor Electron transfer Competitive inhibition Mixed inhibition Dixon plot Lineweaver-Burk plot Ethylene diamine tetraacetic acid 



This work is supported by Department of Science & Technology, New Delhi (DST/TM/WTI/2 K14/197(a)(G)), (SR/FST/ETI-284/2011 (C)), SASTRA (Deemed to be University), Thanjavur. Dr. Manju Bhargavi Gumpu expresses sincere thanks to Science and Engineering Research Board, Department of Science and Technology for Post-Doctoral Fellowship (PDF/2017/001206).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2822_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1978 kb)


  1. 1.
    Huang M-R, Ding Y-B, Li X-G (2013) Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst 138:3820–3829. CrossRefPubMedGoogle Scholar
  2. 2.
    Ghica ME, Carvalho RC, Amine A, Brett CMA (2013) Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt or copper hexacyanoferrate. Sensors Actuators B Chem 178:270–278. CrossRefGoogle Scholar
  3. 3.
    Zhang H, Ding J, Du D (2015) Electrochemical evaluation of the mechanism of acetylcholinesterase inhibition based on an electrodeposited thin film. Int J Electrochem Sci 10:1632–1645Google Scholar
  4. 4.
    Stoytcheva M, Sharkova V, Panayotova M (1998) Electrochemical approach in studying the inhibition of acetylcholinesterase by arsenate(III): analytical characterisation and application for arsenic determination. Anal Chim Acta 364:195–201. CrossRefGoogle Scholar
  5. 5.
    Sanllorente-Méndez S, Domínguez-Renedo O, Julia Arcos-Martínez M (2010) Immobilization of acetylcholinesterase on screen-printed electrodes. Application to the determination of arsenic(III). Sensors 10:2119–2128. CrossRefPubMedGoogle Scholar
  6. 6.
    Deshpande K, Mishra RK, Bhand S (2010) A high sensitivity micro format chemiluminescence enzyme inhibition assay for determination of hg(II). Sensors 10:6377–6394. CrossRefPubMedGoogle Scholar
  7. 7.
    Kumar DN, Roy J, Alex SA et al (2016) Spectrofluorimetric determination of hg 2+ and Pb 2+ using acetylcholinesterase (AChE)-based formation of silver nanoparticles. RSC Adv 6:21261–21270. CrossRefGoogle Scholar
  8. 8.
    Florescu M, Badea M, Coman G, Mitrica M (2009) Screen printed electrodes used for detection of ionic heavy metals. Bull Transilv Univ Brasov 2:49–54Google Scholar
  9. 9.
    Amine A, Arduini F, Moscone D, Palleschi G (2016) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194. CrossRefPubMedGoogle Scholar
  10. 10.
    Qian S, Lin H (2015) Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem 87:5395–5400. CrossRefPubMedGoogle Scholar
  11. 11.
    Chauhan N, Narang J, Jain U (2015) Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles. Analyst 140:1988–1994. CrossRefPubMedGoogle Scholar
  12. 12.
    Xia N, Wang Q, Liu L (2015) Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides. Sensors (Basel) 15:499–514. CrossRefGoogle Scholar
  13. 13.
    Gumpu MB, Murugan V, Krishnan UM, Rayappan JBB (2017) Simultaneous electrochemical detection of cd(II), Pb(II), as(III) and hg(II) ions using ruthenium(II)-textured graphene oxide nanocompoiste. Talanta 162:574–582CrossRefPubMedGoogle Scholar
  14. 14.
    Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of cd(II) and Pb(II). Chem Eng J 299:150–155. CrossRefGoogle Scholar
  15. 15.
    Murugan V, Hunter R, Neethirajan S (2015) Lipoxygenase-modified Ru-bpy / graphene oxide : electrochemical biosensor for on-farm monitoring of non-esterified fatty acid. Biosens Bioelectron 78:253–258. CrossRefGoogle Scholar
  16. 16.
    Zhao G, Li J, Ren X et al (2011) Few-layered graphene oxide nanosheets for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. CrossRefPubMedGoogle Scholar
  17. 17.
    Veerapandian M, Hunter R, Neethirajan S (2016) Ruthenium dye sensitized graphene oxide electrode for on-farm rapid detection of beta-hydroxybutyrate. Sensors Actuators B Chem 228:180–184. CrossRefGoogle Scholar
  18. 18.
    Veerapandian M, Lee M-H, Krishnamoorthy K, Yun K (2012) Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon N Y 50:4228–4238. CrossRefGoogle Scholar
  19. 19.
    Ovalle M, Stoytcheva M, Zlatev R et al (2008) Electrochemical study on the type of immobilized acetylcholinesterase inhibition by sodium fluoride. Electrochim Acta 53:6344–6350. CrossRefGoogle Scholar
  20. 20.
    Arduini F, Guidone S, Amine A et al (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B Chem 179:201–208. CrossRefGoogle Scholar
  21. 21.
    Stoytcheva M, Zlatev R, Velkova Z et al (2009) Analytical characteristics of electrochemical biosensors. Port Electrochim Acta 27:353–362. CrossRefGoogle Scholar
  22. 22.
    Du D, Chen S, Song D et al (2008) Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface. Biosens Bioelectron 24:475–479. CrossRefPubMedGoogle Scholar
  23. 23.
    Migliorini FL, Sanfelice RC, Pavinatto A et al (2017) Voltammetric cadmium(II) sensor based on a fluorine doped tin oxide electrode modified with polyamide 6/chitosan electrospun nanofibers and gold nanoparticles. Microchim Acta 184:1077–1084. CrossRefGoogle Scholar
  24. 24.
    Fuku X, Iftikar F, Hess E et al (2012) Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal Chim Acta 730:49–59. CrossRefPubMedGoogle Scholar
  25. 25.
    Male KB, Hrapovic S, Santini JM, Luong JHT (2007) Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Anal Chem 79:7831–7837. CrossRefPubMedGoogle Scholar
  26. 26.
    Wang T, Milton RD, Abdellaoui S et al (2016) Laccase inhibition by Arsenite/arsenate: determination of inhibition mechanism and preliminary application to a self-powered biosensor. Anal Chem 88:3243–3248. CrossRefPubMedGoogle Scholar
  27. 27.
    Guascito MR, Malitesta C, Mazzotta E, Turco A (2008) Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor. Sensors Actuators B Chem 131:394–402. CrossRefGoogle Scholar
  28. 28.
    Ghica ME, Brett CMA (2008) Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim Acta 163:185–193. CrossRefGoogle Scholar
  29. 29.
    Tekaya N, Saiapina O, Ben Ouada H et al (2013) Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis. Bioelectrochemistry 90:24–29. CrossRefPubMedGoogle Scholar
  30. 30.
    Bagal-Kestwal D, Karve MS, Kakade B, Pillai VK (2008) Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: application of ultra-microelectrode to enhance sucrose biosensor’s sensitivity. Biosens Bioelectron 24:657–664. CrossRefPubMedGoogle Scholar
  31. 31.
    Silwana B, Van Der Horst C, Iwuoha E, Somerset V (2014) Amperometric determination of cadmium, lead, and mercury metal ions using a novel polymer immobilised horseradish peroxidase biosensor system. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1501–1511. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Manju Bhargavi Gumpu
    • 1
    • 2
  • Murugan Veerapandian
    • 3
  • Uma Maheswari Krishnan
    • 4
  • John Bosco Balaguru Rayappan
    • 1
    • 2
  1. 1.Nano Sensors Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Electrical EngineeringSASTRA (Deemed to be University)ThanjavurIndia
  2. 2.School of Electrical & Electronics EngineeringSASTRA (Deemed to be University)ThanjavurIndia
  3. 3.CSIR- Central Electrochemical Research InstituteKaraikudiIndia
  4. 4.School of Chemical and BiotechnologySASTRA (Deemed to be University)ThanjavurIndia

Personalised recommendations