Advertisement

Microchimica Acta

, 185:324 | Cite as

Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device

  • Kingkan Pungjunun
  • Sudkate Chaiyo
  • Issarapong Jantrahong
  • Siriwan Nantaphol
  • Weena Siangproh
  • Orawon Chailapakul
Original Paper
  • 25 Downloads

Abstract

A multistep paper-based analytical device (mPAD) was designed and applied to the voltammetric determination of total inorganic arsenic. The electrodeposition of gold nanoparticles on a boron-doped diamond (AuNP/BDD) electrode and the determination of total inorganic arsenic is accomplished with a single device. Total inorganic arsenic can be determined by first reducing As(V) to As(III) using thiosulfate in 1.0 mol L−1 HCl. As(III) is then deposited on the electrode surface, and total inorganic arsenic is quantified as As(III) by square-wave anodic stripping voltammetry the potential range between −0.25 V and 0.35 V (vs. Ag/AgCl), best at around 0.05 V. Under optimal conditions, the voltammetric response for As(III) detection is linear in the range from 0.1 to 1.5 μg mL−1 and the limit of detection (3SD/slope) is 20 ng mL−1. The relative standard deviation at 0.3, 0.7 and 1.0 μg mL−1 of As(III) are 3.6, 4.3 and 3.3, respectively (10 different electrodes). The results show that the assay has high precision, a rather low working potential, and excellent sensor-to-sensor reproducibility. The method was employed to the determination of total inorganic arsenic in rice samples. Results agreed well with those obtained by inductively coupled plasma-optical emission spectroscopy (ICP-OES).

Graphical abstract

A multistep paper-based analytical device (mPAD) is described that integrates a AuNP/BDD electrode preparation step and a detection step into a single device. The AuNPs are easily deposited on the BDD electrode by applying electrodeposition potential. The total inorganic arsenic concentration in rice samples was determined by using square-wave anodic stripping voltammetry.

Keywords

Portable sensor Metal nanoparticles Arsenic detection Thiosulfate Electrochemical detection Rice sample 

Notes

Acknowledgements

The authors gratefully appreciated the financial support from the Thailand Research Fund via the Research Team Promotion Grant (RTA6080002), the Ratchadaphisaksomphot Endowment Fund of Chulalongkorn University and Science Achievement Scholarship of Thailand (SAST).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2821_MOESM1_ESM.docx (367 kb)
ESM 1 (DOCX 367 kb)

References

  1. 1.
    (2010) Arsenic compounds. Toxnet toxicology Data Network. https://toxnet.nlm.nih.gov/cgi-bin/sis/search/a?dbs+hsdb:@term+@DOCNO+6994. Accessed 04 April 2018
  2. 2.
    Teixeira M-C, Tavares E de F-L, Snaczk A-A, Okumura L-L, Cardoso M das G, Margriotis Z-M, de Oliveira M-F (2014) Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode. Food Chem 154:38–43CrossRefGoogle Scholar
  3. 3.
    Macedo S-M, de Jesus R-M, Garcia K-S, Hatje V, de Queiroz A-FS, Ferreira S-L-C (2009) Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta 80:974–979CrossRefGoogle Scholar
  4. 4.
    Jia X, Gong D, Wang J, Huang F, Duan T, Zhang X (2016) Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC–ICP-MS determination. Talanta 160:437–443CrossRefGoogle Scholar
  5. 5.
    Luo J, Xu F, Hu J, Lin P, Tu J, Wu X, Hou X (2017) Preconcentration on metal organic framework UiO-66 for slurry sampling hydride generation-atomic fluorescence spectrometric determination of ultratrace arsenic. Microchem J 133:441–447CrossRefGoogle Scholar
  6. 6.
    Zheng G, Meng Y, Xing-Jiu H (2017) Recent developments in electrochemical determination of arsenic. Curr Opin Electrochemistry 3:130-136Google Scholar
  7. 7.
    Li X, Zhou H, Fu C, Wang F, Ding Y, Kuang Y (2016) A novel design of engineered multi-walled carbon nanotubes material and its improved performance in simultaneous detection of cd(II) and Pb(II) by square wave anodic stripping voltammetry. Sensors Actuators B Chem 236:144–152CrossRefGoogle Scholar
  8. 8.
    Rosolina S-M, Chambers J-Q, Lee C-W, Xue Z (2015) Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions. Anal Chim Acta 893:25–33CrossRefGoogle Scholar
  9. 9.
    Rodrigues J-A, Rodrigues C-M, Almeida P-J, Valente I-M, Goncalves L-M, Compton R-G, Barros A-A (2011) Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition. Anal Chim Acta 701:152–156CrossRefGoogle Scholar
  10. 10.
    Herzog G, Moujahid W, Twomey K, Lyons C, Ogurtsov V-I (2013) On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116:26–32CrossRefGoogle Scholar
  11. 11.
    Wang W, Bai H, Li H, Lv Q, Zhang Q, Bao N (2016) Carbon tape coated with gold film as stickers for bulk fabrication of disposable gold electrodes to detect Cr(VI). Sensors Actuators B Chem 236:218–225CrossRefGoogle Scholar
  12. 12.
    Punrat E, Chuanuwatanakul S, Kaneta T, Motomizu S, Chailapakul O (2013) Method development for the determination of arsenic by sequential injection/anodic stripping voltammetry using long-lasting gold-modified screen-printed carbon electrode. Talanta 116:1018–1025CrossRefGoogle Scholar
  13. 13.
    Song Y, Swain G-M (2007) Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode. Anal Chim Acta 593:7–12CrossRefGoogle Scholar
  14. 14.
    Carrera P, Espinoza-Montero P-J, Fernández L, Romero H, Alvarado J (2017) Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Talanta 166:198–206CrossRefGoogle Scholar
  15. 15.
    Idris A-O, Mafa J-P, Mabuba N, Arotiba O-A (2017) Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russ J Electrochem 53:170–177CrossRefGoogle Scholar
  16. 16.
    Idris A-O, Mabuba N, Arotiba O-A (2017) Electrochemical co-detection of arsenic and selenium on a glassy carbon electrode modified with gold nanoparticles. Int J Electrochem Sci 12:10–21CrossRefGoogle Scholar
  17. 17.
    Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Karuwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed polyaniline modified screen-printed carbon electrode for ascorbic acid detection. J Electroanal Chem 685:72–78CrossRefGoogle Scholar
  18. 18.
    Ma C, Li W, Kong Q, Yang H, Bian Z, Song X, Yu J, Yan M (2015) 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy. Biosens Bioelectron 63:7–13CrossRefGoogle Scholar
  19. 19.
    Nantaphol S, Chailapakul O, Siangproh W (2015) A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal Chim Acta 891:136–143CrossRefGoogle Scholar
  20. 20.
    Liu H, Xiang Y, Lu Y, Crooks R-M (2012) Aptamer-based origami paper analytical device for electrochemical detection of adenosine. Angew Chem Int Ed 51:6925–6928CrossRefGoogle Scholar
  21. 21.
    Anezaki K, Nukatsuka I, Ohzeki K (1999) Determination of arsenic(III) and total arsenic(III,V) in water samples by resin suspension graphite furnace atomic absorption spectrometry. Anal Sci 15:829–834CrossRefGoogle Scholar
  22. 22.
    Paik M, Kim M, Kim W, Yoo J, Park B, Im G, Park J, Hong M (2010) Determination of arsenic species in polished rice using a methanol-water digestion met. Appl Bio Chem 53:634–638Google Scholar
  23. 23.
    Hong C, Weiying Y, Xiangjun L, Zhuobin Y (2012) An electrochemical sensor based on a magnetic Fe3O4 nanoparticles and gold nanoparticles modified electrode for sensitive determination of trace amounts of arsenic(III). Anal Methods 4:4176–4181CrossRefGoogle Scholar
  24. 24.
    Alvarado-Gamez A-L, Alonso-Lomillo M-A, Dominguez-Renedo O, Arcos-Martinez M-J (2013) Vanadium determination in water using alkaline phosphatase based screen-printed carbon electrodes modified with gold nanoparticles. J Electroanal Chem 693:51–55CrossRefGoogle Scholar
  25. 25.
    Daisuke Y, Tribidasari A-I, Motoharu K, Akira F, Yasuaki E (2008) Anodic stripping voltammetry of inorganic species of As3+ and As5+ at gold-modified boron doped diamond electrodes. J Electroanal Chem 615:145–153CrossRefGoogle Scholar
  26. 26.
    Davis P-H, Dulude G-R, Griffin R-M, Matson W-R, Zink E-W (1978) Determination of total arsenic at the nanogram level by high-speed anodic stripping voltammetry. Anal Chem 50:137–143CrossRefGoogle Scholar
  27. 27.
    Ramanavicius A, German N, Ramanaviciene A (2017) Evaluation of electron transfer in electrochemical system based on immobilize gold nanoparticles and glucose oxidase. J Electrochem Soc 164:45–49CrossRefGoogle Scholar
  28. 28.
    Long G-L, Winefordner J-D (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55:712A–724ACrossRefGoogle Scholar
  29. 29.
    (2013). Analytical results from inorganic arsenic in rice and rice products sampling. U.S. Food and Drug Administration. http://www.fda.gov/downloads/Food/FoodborneIllnessContaminants/Metals/UCM352467.pdf. Accessed 04 April 2018
  30. 30.
    Hilal A, Akil A, Sheikh S-I (2017) Magnetic Fe3O4@poly(methacrylic acid) particles for selective preconcentration of trace arsenic species. Microchim Acta 184:2007–2014CrossRefGoogle Scholar
  31. 31.
    Shahed H, Gholamreza K, Amir R-J-A (2015) Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization. Microchim Acta 182:1957–1965CrossRefGoogle Scholar
  32. 32.
    Bankim J-S, Nayan S-G, Pramod K-K, Shashi P-K, Ashwini K-S (2015) Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with a thiacrown ether and gold nanoparticles. Microchim Acta 182:1473–1481CrossRefGoogle Scholar
  33. 33.
    Yuecun L, Hanjin L, Xiaohui R, Yiping W, Yuze L (2012) Anodic stripping voltammetric determination of arsenic(III) using a glassy carbon electrode modified with gold-palladium bimetallic nanoparticles. Microchim Acta 178:153–161CrossRefGoogle Scholar
  34. 34.
    Rashid O-K, Ibtisam E-T (2005) Resolving the copper interference effect on the stripping chronopotentiometric response of lead(II) obtained at bismuth film screen-printed electrode. Talanta 66:1089–1093CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Kingkan Pungjunun
    • 1
  • Sudkate Chaiyo
    • 1
  • Issarapong Jantrahong
    • 1
  • Siriwan Nantaphol
    • 1
  • Weena Siangproh
    • 2
  • Orawon Chailapakul
    • 1
    • 3
  1. 1.Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Chemistry, Faculty of ScienceSrinakharinwirot UniversityBangkokThailand
  3. 3.Center of Excellence on Petrochemical and Materials TechnologyChulalongkorn UniversityBangkokThailand

Personalised recommendations