Advertisement

Microchimica Acta

, 185:282 | Cite as

Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers

Original Paper
  • 165 Downloads

Abstract

Porous carbon nanofibers codoped with nitrogen and sulfur (NFs) were prepared by pyrolysis of trithiocyanuric acid, silica nanospheres and polyacrylonitrile (PAN) followed by electrospinning. The NFs were used to modify a glassy carbon electrode (GCE) which then displayed highly sensitive response to traces of Cd(II). Compared to a bare GCE and a Nafion modified GCE, the GCE modified with codoped NFs shows improved sensitivity for Cd(II) in differential pulse anodic sweep voltammetry. The stripping peak current (typically measured at 0.81 V vs. Ag/AgCl) increases linearly in the 2.0–500 μg·L−1 Cd(II) concentration range. This is attributed to the large surface area (109 m2·g−1), porous structure, and high fraction of heteroatoms (19 at.% of N and 0.75 at.% of S). The method was applied to the determination of Cd(II) in (spiked) tap water where it gave recoveries that ranged between 96% and 103%.

Graphical abstract

Schematic of a glassy carbon electrode (GCE) modified with N- and S-codoped porous carbon nanofibers (N,S-PCNFs). This GCE has good selectivity for cadmium ion (Cd2+) which can be determined by differential pulse anodic sweeping voltammetry (DPASV) with a detection limit as low as 0.7 ng·mL−1.

Keywords

Electrospinning Differential pulse anodic sweep voltammetry Electrochemical sensor Electroanalysis Heavy metals Tap water analysis 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2818_MOESM1_ESM.docx (109 kb)
ESM 1 (DOCX 107 kb)

References

  1. 1.
    Qin D, Xu R, Shen H, Mamat X, Wang L, Gao S, Wang Y, Yalikun N, Wagberg T, Zhang S, yuan Q, Li Y, Hu G (2017) Protic salt-based nitrogen-doped mesoporous carbon for simultaneous electrochemical detection of cd(ii) and Pb(ii). RSC Adv 7(59):36929–36934.  https://doi.org/10.1039/c7ra04806h CrossRefGoogle Scholar
  2. 2.
    Liao Y, Li Q, Wang N, Shao S (2015) Development of a new electrochemical sensor for determination of Hg(II) based on Bis(indolyl)methane/Mesoporous carbon nanofiber/Nafion/glassy carbon electrode. Sensors Actuators B Chem 215:592–597.  https://doi.org/10.1016/j.snb.2015.04.006 CrossRefGoogle Scholar
  3. 3.
    Lee S, Park S-K, Choi E, Piao Y (2016) Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J Electroanal Chem 766:120–127.  https://doi.org/10.1016/j.jelechem.2016.02.003 CrossRefGoogle Scholar
  4. 4.
    Zahid A, Shah A, Iftikhar FJ, Shah AH, Qureshi R (2017) Surfactant modified glassy carbon electrode as an efficient sensing platform for the detection of cd (ӏӏ) and hg (ӏӏ). Electrochim Acta 235:72–78.  https://doi.org/10.1016/j.electacta.2017.03.120 CrossRefGoogle Scholar
  5. 5.
    Dueraning A, Kanatharana P, Thavarungkul P, Limbut W (2016) An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochim Acta 221:133–143.  https://doi.org/10.1016/j.electacta.2016.10.069 CrossRefGoogle Scholar
  6. 6.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with Ultralong cycle life and superior rate capability. Adv Energy Mater 6(7):1502217.  https://doi.org/10.1002/aenm.201502217 CrossRefGoogle Scholar
  7. 7.
    Wu Z-Y, Xu X-X, Hu B-C, Liang H-W, Lin Y, Chen L-F, Yu S-H (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient Electrocatalysis. Angewandte Chemie-International Edition 54(28):8179–8183.  https://doi.org/10.1002/anie.201502173 CrossRefGoogle Scholar
  8. 8.
    Chen L-F, Lu Y, Yu L, Lou XW (2017) Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ Sci 10(8):1777–1783.  https://doi.org/10.1039/c7ee00488e CrossRefGoogle Scholar
  9. 9.
    Xu R, Xiao L, Luo L, Jia H, Wang C, Wang F (2017) High electrochemical performance for Pb(II) detection based on N,S co-doped porous honeycomb carbon modified electrodes. J Electrochem Soc 164(7):B382–B389.  https://doi.org/10.1149/2.0111709jes CrossRefGoogle Scholar
  10. 10.
    Anh NTN, Chowdhury AD, R-a D (2017) Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sensors Actuators B Chem 252:1169–1178.  https://doi.org/10.1016/j.snb.2017.07.177 CrossRefGoogle Scholar
  11. 11.
    Singh DK, Jenjeti RN, Sampath S, Eswaramoorthy M (2017) Two in one: N-doped tubular carbon nanostructure as an efficient metal-free dual electrocatalyst for hydrogen evolution and oxygen reduction reactions. J Mater Chem A 5(13):6025–6031.  https://doi.org/10.1039/c6ta11057f CrossRefGoogle Scholar
  12. 12.
    Pan F, Cao Z, Zhao Q, Liang H, Zhang J (2014) Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. J Power Sources 272:8–15.  https://doi.org/10.1016/j.jpowsour.2014.07.180 CrossRefGoogle Scholar
  13. 13.
    Liu Y, Qiao Y, Wei G, Li S, Lu Z, Wang X, Lou X (2017) Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. Energy Storage Materials 11:274–281.  https://doi.org/10.1016/j.ensm.2017.09.003 CrossRefGoogle Scholar
  14. 14.
    Barton J, García MBG, Santos DH, Fanjul-Bolado P, Ribotti A, McCaul M, Diamond D, Magni P (2015) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183(2):503–517.  https://doi.org/10.1007/s00604-015-1651-0 CrossRefGoogle Scholar
  15. 15.
    Wang W, Qin J, Cao M (2016) Structure interlacing and pore engineering of Zn2GeO4 nanofibers for achieving high capacity and rate capability as an anode material of Lithium ion batteries. ACS Appl Mater Interfaces 8(2):1388–1397.  https://doi.org/10.1021/acsami.5b10468 CrossRefGoogle Scholar
  16. 16.
    Xia C, Hai X, Chen XW, Wang JH (2017) Simultaneously fabrication of free and solidified N, S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection. Talanta 168:269–278.  https://doi.org/10.1016/j.talanta.2017.03.040 CrossRefGoogle Scholar
  17. 17.
    Zou L, Lai Y, Hu H, Wang M, Zhang K, Zhang P, Fang J, Li J (2017) N/S co-doped 3 D porous carbon Nanosheet networks enhancing anode performance of sodium-ion batteries. Chemistry 23(57):14261–14266.  https://doi.org/10.1002/chem.201702182 CrossRefGoogle Scholar
  18. 18.
    Sun D, Ban R, Zhang P-H, Wu G-H, Zhang J-R, Zhu J-J (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 64:424–434.  https://doi.org/10.1016/j.carbon.2013.07.095 CrossRefGoogle Scholar
  19. 19.
    Xiao L, Yin J, Li Y, Yuan Q, Shen H, Hu G, Gan W (2016) Facile one-pot synthesis and application of nitrogen and sulfur-doped activated graphene in simultaneous electrochemical determination of hydroquinone and catechol. Analyst 141(19):5555–5562.  https://doi.org/10.1039/c6an00812g CrossRefGoogle Scholar
  20. 20.
    Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy 1(1):15006.  https://doi.org/10.1038/nenergy.2015.6 CrossRefGoogle Scholar
  21. 21.
    Qin D, Gao S, Wang L, Shen H, Yalikun N, Sukhrobov P, Wagberg T, Zhao Y, Mamat X, Hu G (2017) Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of cd(II) and Pb(II). Microchim Acta 184(8):2759–2766.  https://doi.org/10.1007/s00604-017-2260-x CrossRefGoogle Scholar
  22. 22.
    Zuo Y, Xu J, Jiang F, Duan X, Lu L, Ye G, Li C, Yu Y (2017) Utilization of AuNPs dotted S-doped carbon nanoflakes as electrochemical sensing platform for simultaneous determination of cu (II) and hg (II). J Electroanal Chem 794:71–77.  https://doi.org/10.1016/j.jelechem.2017.04.002 CrossRefGoogle Scholar
  23. 23.
    Shen L, Wang J, Xu G, Li H, Dou H, Zhang X (2015) NiCo2S4Nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv Energy Mater 5(3):1400977.  https://doi.org/10.1002/aenm.201400977 CrossRefGoogle Scholar
  24. 24.
    Mettakoonpitak J, Mehaffy J, Volckens J, Henry CS (2017) AgNP/Bi/Nafion-modified disposable electrodes for sensitive Zn(II), Cd(II), and Pb(II) detection in aerosol samples. Electroanalysis 29(3):880–889.  https://doi.org/10.1002/elan.201600591 CrossRefGoogle Scholar
  25. 25.
    Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of cd (II) and Pb (II). Chem Eng J 299:150–155CrossRefGoogle Scholar
  26. 26.
    Serrano N, Gonzalez-Calabuig A, del Valle M (2015) Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd(II), Pb(II) and Cu(II). Talanta 138:130–137.  https://doi.org/10.1016/j.talanta.2015.01.044 CrossRefGoogle Scholar
  27. 27.
    Liu X, Li Z, Ding R, Ren B, Li Y (2015) A nanocarbon paste electrode modified with nitrogen-doped graphene for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta 183(2):709–714.  https://doi.org/10.1007/s00604-015-1713-3 CrossRefGoogle Scholar
  28. 28.
    Li Y, Sun G, Zhang Y, Ge C, Bao N, Wang Y (2013) A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry. Microchim Acta 181(7–8):751–757.  https://doi.org/10.1007/s00604-013-1082-8 Google Scholar
  29. 29.
    Niu P, Fernández-Sánchez C, Gich M, Navarro-Hernández C, Fanjul-Bolado P, Roig A (2015) Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 183(2):617–623.  https://doi.org/10.1007/s00604-015-1684-4 CrossRefGoogle Scholar
  30. 30.
    Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151.  https://doi.org/10.1016/j.electacta.2014.08.021 CrossRefGoogle Scholar
  31. 31.
    Quang Khieu D, Dang Son BH, Thi Thanh Chau V, Dinh Du P, Hai Phong N, Thi Diem Chau N (2017) 3-Mercaptopropyltrimethoxysilane modified diatomite: preparation and application for Voltammetric determination of lead (II) and cadmium (II). Journal of Chemistry 2017:1–10.  https://doi.org/10.1155/2017/9560293 CrossRefGoogle Scholar
  32. 32.
    Ashrafi AM, Cerovac S, Mudrić S, Guzsvány V, Husáková L, Urbanová I, Vytřas K (2014) Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals. Sensors Actuators B Chem 191:320–325.  https://doi.org/10.1016/j.snb.2013.08.087 CrossRefGoogle Scholar
  33. 33.
    Cerovac S, Guzsvany V, Konya Z, Ashrafi AM, Svancara I, Roncevic S, Kukovecz A, Dalmacija B, Vytras K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649.  https://doi.org/10.1016/j.talanta.2014.12.002 CrossRefGoogle Scholar
  34. 34.
    Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors Actuators B Chem 207:526–534.  https://doi.org/10.1016/j.snb.2014.10.126 CrossRefGoogle Scholar
  35. 35.
    Hao C, Shen Y, Shen J, Xu K, Wang X, Zhao Y, Ge C (2016) A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and cd(II). Microchim Acta 183(6):1823–1830.  https://doi.org/10.1007/s00604-016-1816-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiChina
  2. 2.School of Materials Science and EngineeringAnhui University of Science & TechnologyHuainanChina
  3. 3.Center for Electron Microscopy, Institute for New Energy Materials and Low-Carbon Technologies, School of Material Science and EngineeringTianjin University of TechnologyTianjinChina
  4. 4.School of Material Science and EngineeringUniversity of JinanJinanChina
  5. 5.Department of PhysicsUmea UniversityUmeaSweden

Personalised recommendations