Skip to main content
Log in

Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical sensor based on the use of diamond nanoparticles (DNPs) and molybdenum disulfide (MoS2) platelets. The sensor was applied to the voltammetric determination of the anticonvulsant valproic acid which was previously derivatized with ferrocene. The MoS2 platelets were obtained by an exfoliation method, and the DNPs were directly dispersed in water and subsequently deposited on a glassy carbon electrode (GCE). The sensor response was optimized in terms of the solvent employed for dispersing the MoS2 nanomaterial and the method for modifying the GCE. Sensors consisting of a first layer of MoS2 dispersed in ethanol/water and a second layer of DNPs give better response. The single steps of sensor construction were characterized by atomic force microscopy and electrochemical impedance spectroscopy. The differential pulse voltammetric response of the GCE (measured at +0.18 V vs. Ag/AgCl) was compared to that of sensors incorporating only one of the nanomateriales (DNPs or MoS2). The formation of a hybrid MoS2-DNP structure clearly improves performance. The GCE containing both nanomaterials exhibits high sensitivity (740 µA ⋅ mM−1 ⋅ cm−2), a 0.27 μM detection limit, and an 8% reproducibility (RSD). The sensor retained 99% of its initial response after 45 days of storage.

Electrochemical sensor by co-immobilization of MoS2 and diamond nanoparticles (DNP). The formation of a hybrid MoS2-DNP structure enhances the performance of the sensor towards valproic acid derivatized with a ferrocene group, when compared with sensors incorporating only DNP or MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  2. Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42(5):1934–1946

    Article  CAS  PubMed  Google Scholar 

  3. Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nano 3(1):20–30

    Google Scholar 

  4. Coleman JN, Lotya M, O'Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

    Article  CAS  PubMed  Google Scholar 

  5. Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MSP, Coleman JN (2012) Solvent exfoliation of transition metal dichalcogenides: dispersability of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4):3468–3480

    Article  CAS  PubMed  Google Scholar 

  6. Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg GS, Grunlan JC, Moriarty G, Chen J, Wang J, Minett AI, Nicolosi V, Coleman JN (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34):3944–3948

    Article  CAS  PubMed  Google Scholar 

  7. Zeng Z, Sun T, Zhu J, Huang X, Yin Z, Lu G, Fan Z, Yan Q, Hng HH, Zhang H (2012) An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem 51(36):9052–9056

    Article  CAS  Google Scholar 

  8. BK-k L, Zhang W, Lee Y-h, Y-c L (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 2:1–9

    Article  Google Scholar 

  9. Ye L, Xu H, Zhang D, Chen S (2014) Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater Res Bull 55(2):221–228

    Article  CAS  Google Scholar 

  10. Zhan Y, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8(7):966–971

    Article  CAS  PubMed  Google Scholar 

  11. Gong Y, Yang S, Zhan L, Ma L, Vajtai R, Ajayan PM (2014) A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv Funct Mater 24(1):125–130

    Article  CAS  Google Scholar 

  12. Kappera R, Voiry D, Yalcin SE, Branch B, Gupta G, Mohite AD, Chhowalla M (2014) Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater 13(August):1–15

    Google Scholar 

  13. Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10274

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Weng Q, Yang Y, Bando Y, Golberg D (2016) Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem Soc Rev 45(15):4042–4073

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Guo J, Kang Y, Ai Y, Li CM (2015) Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nano 7(46):19358–19376

    CAS  Google Scholar 

  16. Pumera M, Loo AH (2014) Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trends Anal Chem 61:49–53

    Article  CAS  Google Scholar 

  17. Shavanova K, Bakakina Y, Burkova I, Shtepliuk I, Viter R, Ubelis A, Beni V, Starodub N, Yakimova R, Khranovskyy V (2016) Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2):1–23

    Article  CAS  Google Scholar 

  18. Yan L, Shi H, Sui X, Deng Z, Gao L (2017) MoS2-DNA and MoS2 based sensors. RSC Adv 7:23573–23582

    Article  Google Scholar 

  19. Zhu C, Du D, Lin Y (2015) Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review. 2D. Mater 2(3):032004–032004

    Google Scholar 

  20. Lv Z, Mahmood N, Tahir M, Pan L, Zhang X, J-j Z (2016) Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nano 8:18250–18269

    CAS  Google Scholar 

  21. Huang J, Dong Z, Li Y, Li J, Tang W, Yang H, Wang J, Bao Y, Jin J, Li R (2013) MoS2 nanosheet functionalized with Cu nanoparticles and its application for glucose detection. Mater Res Bull 48(11):4544–4547

    Article  CAS  Google Scholar 

  22. Huang KJ, Liu YJ, Liu YM, Wang LL (2014) Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol a determination. J Hazard Mater 276:207–215

    Article  CAS  PubMed  Google Scholar 

  23. Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuators B Chem 178:671–677

    Article  CAS  Google Scholar 

  24. Song H, Ni Y, Kokot S (2014) Investigations of an electrochemical platform based on the layered MoS2-graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis. Biosens Bioelectron 56:137–143

    Article  CAS  PubMed  Google Scholar 

  25. Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202

    Article  CAS  PubMed  Google Scholar 

  26. Huang K-j, Zhang J-z, Liu Y-j, Wang L-l (2014) Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sens Actuators B Chem 194:303–310

    Article  CAS  Google Scholar 

  27. Yang T, Chen M, Nan F, Chen L, Luo X, Jiao K (2015) Enhanced electropolymerization of poly(xanthurenic acid)-MoS2 film for specific electrocatalytic detection of guanine and adenine. J Mater Chem B 3(24):4884–4891

    Article  CAS  Google Scholar 

  28. Sajedi-Moghaddam A, Saievar-Iranizad E, Pumera M (2017) Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nano 9(24):8052–8065

    CAS  Google Scholar 

  29. Feng Q, Duan K, Ye X, Lu D, Du Y, Wang C (2014) A novel way for detection of eugenol via poly (diallyldimethylammonium chloride) functionalized graphene-MoS2 nano-flower fabricated electrochemical sensor. Sens Actuators B Chem 192:1–8

    Article  CAS  Google Scholar 

  30. Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181(13–14):1497–1503

    Article  CAS  Google Scholar 

  31. Su S, Sun H, Xu F, Yuwen L, Wang L (2013) Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 25(11):2523–2529

    Article  CAS  Google Scholar 

  32. Briones M, Casero E, Petit-Domínguez MD, Ruiz MA, Parra-Alfambra AM, Pariente F, Lorenzo E, Vázquez L (2015) Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens Bioelectron 68:521–528

    Article  CAS  PubMed  Google Scholar 

  33. Briones M, Casero E, Vázquez L, Pariente F, Lorenzo E, Petit-Domínguez MD (2016) Diamond nanoparticles as a way to improve electron transfer in sol-gel L-lactate biosensing platforms. Anal Chim Acta 908:141–149

    Article  CAS  PubMed  Google Scholar 

  34. Briones M, Petit-Domínguez MD, Parra-Alfambra AM, Vázquez L, Pariente F, Lorenzo E, Casero E (2016) Electrocatalytic processes promoted by diamond nanoparticles in enzymatic biosensing devices. Bioelectrochemistry 111:93–99

    Article  CAS  PubMed  Google Scholar 

  35. Stephenson JB, Flater ML, Bain LT (2016) Analysis of valproic acid, salicylic acid and ibuprofen in whole blood by GC-MS. J Anal Toxicol 40:649–652

    Article  CAS  PubMed  Google Scholar 

  36. Dziadosz M (2017) The application of multiple analyte adduct formation in the LC–MS3 analysis of valproic acid in human serum. J Chromatogr B Anal Technol Biomed Life Sci 1040:159–161

    Article  CAS  Google Scholar 

  37. Silva-Trujillo A, Correa-Basurto J, Romero-Castro A, Albores A, Mendieta-Wejebe JE (2015) A simple validated RP-HPLC bioanalytical method for the quantitative determination of a novel valproic acid arylamide derivative in rat hepatic microsomes. Biomed Chromatogr 29:523–528

    Article  CAS  PubMed  Google Scholar 

  38. Zhang JF, Zhang ZQ, Dong WC, Jiang Y (2014) A new derivatization method to enhance sensitivity for the determination of low levels of Valproic acid in human plasma. J Chromatogr Sci 52:1173–1180

    Article  CAS  PubMed  Google Scholar 

  39. Joo KM, Choi D, Park YH, Yi CG, Jeong HJ, Cho JC, Lim KM (2013) A rapid and highly sensitive UPLC-MS/MS method using pre-column derivatization with 2-picolylamine for intravenous and percutaneous pharmacokinetics of valproic acid in rats. J Chromatogr B Anal Technol Biomed Life Sci 938:35–42

    Article  CAS  Google Scholar 

  40. Chen ZJ, Wang XD, Wang HS, Chen SD, Zhou LM, Li JL, Shu WY, Zhou JQ, Fang ZY, Zhang Y, Huang M (2012) Simultaneous determination of valproic acid and 2-propyl-4-pentenoic acid for the prediction of clinical adverse effects in Chinese patients with epilepsy. Seizure 21:110–117

    Article  PubMed  Google Scholar 

  41. Cheng H, Liu Z, Blum W, Byrd JC, Klisovic R, Grever MR, Marcucci G, Chan KK (2007) Quantification of valproic acid and its metabolite 2-propyl-4-pentenoic acid in human plasma using HPLC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 850:206–212

    Article  CAS  Google Scholar 

  42. Shahdousti P, Mohammadi A, Alizadeh N (2007) Determination of valproic acid in human serum and pharmaceutical preparations by headspace liquid-phase microextraction gas chromatography-flame ionization detection without prior derivatization. J Chromatogr B 850:128–133

    Article  CAS  Google Scholar 

  43. Pham TTT, See HH, Morand R, Krähenbühl S, Hauser PC (2012) Determination of free and total valproic acid in human plasma by capillary electrophoresis with contactless conductivity detection. J Chromatogr B Anal Technol Biomed Life Sci 907:74–78

    Article  CAS  Google Scholar 

  44. Zabardasti A, Afrouzi H, Talemi RP (2017) A simple and sensitive methodology for voltammetric determination of valproic acid in human blood plasma samples using 3-aminopropyletriethoxy silane coated magnetic nanoparticles modified pencil graphite electrode. Mater Sci Eng C 76:425–430

    Article  CAS  Google Scholar 

  45. Huang LS, Gunawan C, Yen YK, Chang KF (2015) Direct determination of a small-molecule drug, valproic acid, by an electrically-detected microcantilever biosensor for personalized diagnostics. Biosensors 5:37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sorouraddin MH, Imani-Nabiyyi A, Najibi-Gehraz SA, Rashidi MR (2014) A new fluorimetric method for determination of valproic acid using TGA-capped CdTe quantum dots as proton sensor. J Lumin 145:253–258

    Article  CAS  Google Scholar 

  47. Santos EMG, Araújo AN, Couto CMCM, Montenegro MCBSM (2006) Construction and evaluation of PVC and sol-gel sensor membranes based on Mn(III)TPP-cl. Application to valproate determination in pharmaceutical preparations. Anal Bioanal Chem 384:867–875

    Article  CAS  PubMed  Google Scholar 

  48. Nieto D, Gonzalez-Vadillo AM, Bruña S, Pastor CJ, Ríos-Luci C, Leon LG, Padrón JM, Navarro-Ranninger C, Cuadrado I (2012) Heterometallic platinum(II) compounds with β-aminoethylferrocenes: synthesis, electrochemical behaviour and anticancer activity. Dalton Trans 41:432−441

    Article  Google Scholar 

  49. Nieto D, Gonzalez-Vadillo AM, Bruña S, Pastor CJ, Kaifer AE, Cuadrado I (2011) Pt(II)-activated coupling of aminoethylferrocene with benzonitrile. A facile access route to a new redox-active bis(ferrocenyl-amidine) anion sensor. Chem Commun 47:10398–10400

    Article  CAS  Google Scholar 

  50. Gonsalves KE, Lenz R, Rausch MD (1987) Interfacial polycondensation reactions of the new monomer 1,1′-bis(β -aminoethyl)ferrocene. Appl Organometal Chem 1:81–93

    Article  CAS  Google Scholar 

  51. Bucur RV, Bartes A, Mecea V (1978) Kinetic measurements on a stationary disk electrode in a uniformly rotating fluid (SDERF) - I. The limiting diffusion current in the [Fe (CN)6] 3−/4- system. Electrochim Acta 23(7):641–646

    Article  CAS  Google Scholar 

  52. Pochkhidze MS, Asatiani LP, Rukhadze MD, Chitiashvili ZJ, Tsartsidze MA (1999) Determination of ferrocene-a in the blood serum of rabbits using reversed-phase microcolum HPLC. Biomed Chromatogr 13:89–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministerio de Economía, Industria y Competitividad (MAT2017-85089-C2-1-R, MAT2017-85089-C2-2-R) and the Comunidad Autónoma de Madrid (S2013/MIT-3029, NANOAVANSENS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Casero.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 69.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petit-Domínguez, M.D., Quintana, C., Vázquez, L. et al. Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim Acta 185, 334 (2018). https://doi.org/10.1007/s00604-018-2793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2793-7

Keywords

Navigation