Advertisement

Microchimica Acta

, 185:285 | Cite as

A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices

  • Nae Yoon Lee
Review Article

Abstract

Since the advent of microfabrication technology and soft lithography, the lab-on-a-chip concept has emerged as a state-of-the-art miniaturized tool for conducting the multiple functions associated with micro total analyses of nucleic acids, in series, in a seamless manner with a miniscule volume of sample. The enhanced surface-to-volume ratio inside a microchannel enables fast reactions owing to increased heat dissipation, allowing rapid amplification. For this reason, PCR has been one of the first applications to be miniaturized in a portable format. However, the nature of the basic working principle for microscale PCR, such as the complicated temperature controls and use of a thermal cycler, has hindered its total integration with other components into a micro total analyses systems (μTAS). This review (with 179 references) surveys the diverse forms of PCR microdevices constructed on the basis of different working principles and evaluates their performances. The first two main sections cover the state-of-the-art in chamber-type PCR microdevices and in continuous-flow PCR microdevices. Methods are then discussed that lead to microdevices with upstream sample purification and downstream detection schemes, with a particular focus on rapid on-site detection of foodborne pathogens. Next, the potential for miniaturizing and automating heaters and pumps is examined. The review concludes with sections on aspects of complete functional integration in conjunction with nanomaterial based sensing, a discussion on future prospects, and with conclusions.

Graphical abstract

In recent years, thermocycler-based PCR systems have been miniaturized to palm-sized, disposable polymer platforms. In addition, operational accessories such as heaters and mechanical pumps have been simplified to realize semi-automatted stand-alone portable biomedical diagnostic microdevices that are directly applicable in the field. This review summarizes the progress made and the current state of this field.

Keywords

PCR Lab-on-a-chip (LOC) Micro total analysis systems (μTAS) Functional integration Sample purification Peripheral accessories Foodborne pathogens Nanomaterials Biosensing 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4008179).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354CrossRefPubMedGoogle Scholar
  2. 2.
    Stjernström M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8:33–38CrossRefGoogle Scholar
  3. 3.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefPubMedGoogle Scholar
  4. 4.
    Weerakoon-Ratnayake KM, O’Neil CE, Uba FI, Soper SA (2017) Thermoplastic nanofluidic devices for biomedical applications. Lab Chip 17:362–381CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tsao CW (2016) Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7:225–235CrossRefGoogle Scholar
  6. 6.
    Northrup MA, Ching MT, White RM, Watson RT (1993) DNA amplification in a microfabricated reaction chamber. Tranducer’93-The 7th Int Conf on Solid-State Sens Actuators (Yokohama, Japan) 924–926Google Scholar
  7. 7.
    Zou ZQ, Chen X, Jin QH, Yang MS, Zhao JL (2005) A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques. J Micromech Microeng 15:1476–1481CrossRefGoogle Scholar
  8. 8.
    Zou Q, Miao Y, Chen Y, Sridhar U, Chong CS, Chai T, Tie Y, Teh CHL, Lim TM, Heng CK (2002) Micro-assembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing. Sens Actuators A 102:114–121CrossRefGoogle Scholar
  9. 9.
    Nagai H, Murakami Y, Morita Y, Yokoyama K, Tamiya E (2001) Development of a microchamber array for picoliter PCR. Anal Chem 73:1043–1047CrossRefPubMedGoogle Scholar
  10. 10.
    Taylor TB, Winn-Deen ES, Picozza E, Woudenberg TM, Albin M (1997) Optimization of the performance of the polymerase chain reaction in silicon-based microstructures. Nucleic Acids Res 25:3164–3168CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430CrossRefPubMedGoogle Scholar
  12. 12.
    Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882CrossRefPubMedGoogle Scholar
  13. 13.
    Reyes JCB, Solon JAA, Rivera WL (2014) Development of a loop-mediated isothermal amplification assay for detection of Trichomonas vaginalis. Diagn Microbiol Infect Dis 79:337–341CrossRefPubMedGoogle Scholar
  14. 14.
    Nzelu CO, Gomez EA, Cáceres AG, Sakurai T, Martini-Robles L, Uezato H, Mimori T, Katakura K, Hashiguchi Y, Kato H (2014) Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection. Acta Trop 132:1–6CrossRefPubMedGoogle Scholar
  15. 15.
    Giuffrida MC, Spoto G (2017) Integration of isothermal amplification methods in microfluidic devices: recent advances. Biosens Bioelectron 90:174–186CrossRefPubMedGoogle Scholar
  16. 16.
    Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009) Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxyl naphthol blue. BioTechniques 46:167–172CrossRefPubMedGoogle Scholar
  17. 17.
    Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cao A, Zhang CY (2013) Real-time detection of transcription factors using target-converted helicase-dependent amplification assay with zero-background signal. Anal Chem 85:2543–2547CrossRefPubMedGoogle Scholar
  19. 19.
    Ha ML, Zhang Y, Lee NY (2016) A functionally integrated thermoplastic microdevice for one-step solid-phase-based nucleic acid purification and isothermal amplification for facile detection of foodborne pathogen. Biotechnol Bioeng 113:2614–2623CrossRefPubMedGoogle Scholar
  20. 20.
    Compton J (1991) Nucleic acid sequence-based amplification. Nature 350:91–92CrossRefPubMedGoogle Scholar
  21. 21.
    Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR (1990) Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87:1874–1878CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341CrossRefPubMedGoogle Scholar
  23. 23.
    Sato K, Tachihara A, Renberg B, Mawatari K, Sato K, Tanaka Y, Jarvius J, Nilsson M, Kitamori T (2010) Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip 10:1262–1266CrossRefPubMedGoogle Scholar
  24. 24.
    Crannell Z, Castellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R (2016) Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 88:1610–1616CrossRefPubMedGoogle Scholar
  25. 25.
    Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Liu G (2012) Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron 31:310–315CrossRefPubMedGoogle Scholar
  27. 27.
    Kim TH, Park J, Kim CJ, Cho YK (2014) Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Anal Chem 86:3841–3848CrossRefPubMedGoogle Scholar
  28. 28.
    Roy E, Stewart G, Mounier M, Malic L, Peytavi R, Clime L, Madou M, Bossinot M, Bergeron MG, Veres T (2015) From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care lab on a disc. Lab Chip 15:406–416CrossRefPubMedGoogle Scholar
  29. 29.
    Jung JH, Park BH, Oh SJ, Choi G, Seo TS (2015) Integrated centrifugal reverse transcriptase loop-mediated isothermal amplification microdevice for influenza A virus detection. Biosens Bioelectron 68:218–224CrossRefPubMedGoogle Scholar
  30. 30.
    Czilwik G, Messinger T, Strohmeier O, Wadle S, von Stetten F, Paust N, Roth G, Zengerle R, Saarinen P, Niittymäki J, McAllister K, Sheils O, O'Leary J, Mark D (2015) Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation. Lab Chip 15:3749–3759Google Scholar
  31. 31.
    Stumpf F, Schwemmer F, Hutzenlaub T, Baumann D, Strohmeier O, Dingemanns G, Simons G, Sager C, Plobner L, von Stetten F, Zengerle R, Mark D (2016) LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip 16:199–207CrossRefPubMedGoogle Scholar
  32. 32.
    Anderson NG (1969) Computer interfaced fast analyzers. Science 166:317–324CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang H, Tran HH, Chung BH, Lee NY (2013) Solid-phase based on-chip DNA purification through a valve-free stepwise injection of multiple reagents employing centrifugal force combined with a hydrophobic capillary barrier pressure. Analyst 138:1750–1757CrossRefPubMedGoogle Scholar
  34. 34.
    Yamada M, Seki M (2004) Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices. Anal Chem 76:895–899CrossRefPubMedGoogle Scholar
  35. 35.
    Lee NY, Yamada M, Seki M (2004) Pressure-driven sample injection with quantitative liquid dispensing for on-chip electrophoresis. Anal Sci 20:483–487CrossRefPubMedGoogle Scholar
  36. 36.
    Oh SJ, Park BH, Choi G, Seo JH, Jung JH, Choi JS, Kim DH, Seo TS (2016) Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab Chip 16:1917–1926CrossRefPubMedGoogle Scholar
  37. 37.
    Yamanaka ES, Tortajada-Genaro LA, Maquieira Á (2017) Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Microchim Acta 184:1453–1462CrossRefGoogle Scholar
  38. 38.
    Kopp MU, de Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048CrossRefPubMedGoogle Scholar
  39. 39.
    Nakayama T, Kurosawa Y, Furui S, Kerman K, Kobayashi M, Rao SR, Yonezawa Y, Nakano K, Hino A, Yamamura S, Takamura Y, Tamiya E (2006) Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications. Anal Bioanal Chem 386:1327–1333CrossRefPubMedGoogle Scholar
  40. 40.
    Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A (2002) Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int 85:1119–1126PubMedGoogle Scholar
  41. 41.
    Liu HB, Gong HQ, Ramalingam N, Jiang Y, Dai CC, Hui KM (2007) Micro air bubble formation and its control during polymerase chain reaction (PCR) in polydimethylsiloxane (PDMS) microreactors. J Micromech Microeng 17:2055–2064CrossRefGoogle Scholar
  42. 42.
    Wu W, Kang KT, Lee NY (2011) Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application. Analyst 136:2287–2293CrossRefPubMedGoogle Scholar
  43. 43.
    Nakano H, Matsuda K, Yohda M, Nagamune T, Endo I, Yamane T (1994) High speed polymerase chain reaction in constant flow. Biosci Biotechnol Biochem 58:349–352CrossRefPubMedGoogle Scholar
  44. 44.
    Hatch AC, Ray T, Lintecum K, Youngbull C (2014) Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection. Lab Chip 14:562–568CrossRefPubMedGoogle Scholar
  45. 45.
    Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B 72:129–133CrossRefGoogle Scholar
  46. 46.
    Sun Y, Kwok YC, Nguyen NT (2007) A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab Chip 7:1012–1017CrossRefPubMedGoogle Scholar
  47. 47.
    Wang CH, Chen YY, Liao CS, Hsieh TM, Luo CH, Wu JJ, Lee HH, Lee GB (2007) Circulating polymerase chain reaction chips utilizing multiple-membrane activation. J Micromech Microeng 17:367–375CrossRefGoogle Scholar
  48. 48.
    Chen J, Wabuyele M, Chen H, Patterson D, Hupert M, Shadpour H, Nikitopoulos D, Soper SA (2005) Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal Chem 77:658–666CrossRefPubMedGoogle Scholar
  49. 49.
    Saito M, Takahashi K, Kiriyama Y, Espulgar WV, Aso H, Sekiya T, Tanaka Y, Sawazumi T, Furui S, Tamiya E (2017) Centrifugation-controlled thermal convection and its application to rapid microfluidic polymerase chain reaction devices. Anal Chem 89:12797–12804CrossRefPubMedGoogle Scholar
  50. 50.
    Jeong S, Lim J, Kim MY, Yeom JH, Cho H, Lee H, Shin YB, Lee JH (2018) Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip. Biomed Microdevices 20:14CrossRefPubMedGoogle Scholar
  51. 51.
    Xiang Q, Xu B, Fu R, Li D (2005) Real time PCR on disposable PDMS chip with a miniaturized thermal cycler. Biomed Microdevices 7:273–279CrossRefPubMedGoogle Scholar
  52. 52.
    Wang F, Burns MA (2009) Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices 11:1071–1080CrossRefPubMedGoogle Scholar
  53. 53.
    Tian H, Hühmer AFR, Landers JP (2000) Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 283:175–191CrossRefPubMedGoogle Scholar
  54. 54.
    Wolfe KA, Breadmore MC, Ferrance JP, Power ME, Conroy JE, Norris PM, Landers JP (2002) Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis 23:727–733CrossRefPubMedGoogle Scholar
  55. 55.
    Wu Q, Bienvenue JM, Hassan BJ, Kwok YC, Giordano BC, Norris PM, Landers JP, Ferrance JP (2006) Microchip-based macroporous silica sol-gel monolith for efficient isolation of DNA from clinical samples. Anal Chem 78:5704–5710CrossRefPubMedGoogle Scholar
  56. 56.
    Lee NY, Yamada M, Seki M (2005) Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification. Anal Bioanal Chem 383:776–782CrossRefPubMedGoogle Scholar
  57. 57.
    Azimi SM, Nixon G, Ahern J, Balachandran W (2011) A magnetic bead-based DNA extraction and purification microfluidic device. Microfluid Nanofluid 11:157–165CrossRefGoogle Scholar
  58. 58.
    Yi L, Huang Y, Wu T, Wu J (2013) A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regen Res 8:3036–3046PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ganesh I, Tran BM, Kim Y, Kim J, Cheng H, Lee NY, Park S (2016) An integrated microfluidic PCR system with immunomagnetic nanoparticles for the detection of bacterial pathogens. Biomed Microdevices 18:116CrossRefPubMedGoogle Scholar
  60. 60.
    Yoza B, Matsumoto M, Matsunaga T (2002) DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J Biotechnol 94:217–224CrossRefPubMedGoogle Scholar
  61. 61.
    Duarte GRM, Price CW, Littlewood JL, Haverstick DM, Ferrance JP, Carrilho E, Landers JP (2010) Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads. Analyst 135:531–537CrossRefPubMedGoogle Scholar
  62. 62.
    Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78:788–792CrossRefPubMedGoogle Scholar
  63. 63.
    Root BE, Agarwal AK, Kelso DM, Barron AE (2011) Purification of HIV RNA from serum using a polymer capture matrix in a microfluidic device. Anal Chem 83:982–988CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shin Y, Perera AP, Wong CC, Park MK (2014) Solid phase nucleic acid extraction technique in a microfluidic chip using a novel non-chaotropic agent: dimethyl adipimidate. Lab Chip 14:359–368CrossRefPubMedGoogle Scholar
  65. 65.
    Nakagawa T, Tanaka T, Niwa D, Osaka T, Takeyama H, Matsunaga T (2005) Fabrication of amino silane-coated microchip for DNA extraction from whole blood. J Biotechnol 116:105–111CrossRefPubMedGoogle Scholar
  66. 66.
    Reedy CR, Price CW, Sniegowski J, Ferrance JP, Begley M, Landers JP (2011) Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate) (PMMA) microdevice. Lab Chip 11:1603–1611CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Cao W, Easley CJ, Ferrance JP, Landers JP (2006) Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system. Anal Chem 78:7222–7228CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang Y, Trinh KTL, Yoo IS, Lee NY (2014) One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice. Sens Actuators B 202:1281–1289CrossRefGoogle Scholar
  69. 69.
    Xu Y, Vaidya B, Patel AB, Ford SM, McCarley RL, Soper SA (2003) Solid-phase reversible immobilization in microfluidic chips for the purification of dye-labeled DNA sequencing fragments. Anal Chem 75:2975–2984CrossRefPubMedGoogle Scholar
  70. 70.
    Li Y, Wang Z, Ou LM, Yu HZ (2007) DNA detection on plastic: surface activation protocol to convert polycarbonate substrates to biochip platforms. Anal Chem 79:426–433CrossRefPubMedGoogle Scholar
  71. 71.
    Tran HH, Trinh KTL, Lee NY (2013) Pressure-driven one-step solid phase-based on-chip sample preparation on a microfabricated plastic device and integration with flow-through polymerase chain reaction (PCR). J Chromatogr B 936:88–94CrossRefGoogle Scholar
  72. 72.
    Chiesl TN, Shi W, Barron AE (2005) Poly(acrylamide-co-alkylacrylamides) for electrophoretic DNA purification in microchannels. Anal Chem 77:772–779CrossRefPubMedGoogle Scholar
  73. 73.
    Ro KW, Lim K, Shim BC, Hahn JH (2005) Integrated light collimating system for extended optical-path-length absorbance detection in microchip-based capillary electrophoresis. Anal Chem 77:5160–5166CrossRefPubMedGoogle Scholar
  74. 74.
    Salimi-Moosavi H, Jiang Y, Lester L, McKinnon G, Harrison DJ (2000) A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis 21:1291–1299CrossRefPubMedGoogle Scholar
  75. 75.
    Meunier A, Jouannot O, Fulcrand R, Fanget I, Bretou M, Karatekin E, Arbault S, Guille M, Darchen F, Lemaître F, Amatore C (2011) Coupling amperometry and total internal reflection fluorescence microscopy at ITO surfaces for monitoring exocytosis of single vesicles. Angew Chem Int Ed 50:5081–5084CrossRefGoogle Scholar
  76. 76.
    Jin LJ, Giordano BC, Landers JP (2001) Dynamic labeling during capillary or microchip electrophoresis for laser-induced fluorescence detection of protein-SDS complexes without pre- or postcolumn labeling. Anal Chem 73:4994–4999CrossRefPubMedGoogle Scholar
  77. 77.
    Giordano BC, Jin L, Couch AJ, Ferrance JP, Landers JP (2004) Microchip laser-induced fluorescence detection of proteins at submicrogram per milliliter levels mediated by dynamic labeling under pseudonative conditions. Anal Chem 76:4705–4714CrossRefPubMedGoogle Scholar
  78. 78.
    Caruso G, Fresta CG, Siegel JM, Wijesinghe MB, Lunte SM (2017) Microchip electrophoresis with laser-induced fluorescence detection for the determination of the ratio of nitric oxide to superoxide production in macrophages during inflammation. Anal Bioanal Chem 409:4529–4538CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Qin Y, Zhao J, Huang Y, Li S, Zhao S (2016) Ultrasensitive nuclease activity and inhibition assay using microchip electrophoresis with laser induced fluorescence detection. Anal Methods 8:1852–1857CrossRefGoogle Scholar
  80. 80.
    Woolley AT, Hadley D, Landre P, de Mello AJ, Mathies RA, Northrup MA (1996) Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal Chem 68:4081–4086CrossRefPubMedGoogle Scholar
  81. 81.
    Northrup MA, Benett B, Hadley D, Landre P, Lehew S, Richards J, Stratton P (1998) A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal Chem 70:918–922CrossRefPubMedGoogle Scholar
  82. 82.
    Hong JW, Fujii T, Seki M, Yamamoto T, Endo I (2001) Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis 22:328–333CrossRefPubMedGoogle Scholar
  83. 83.
    Liu CN, Toriello NM, Mathies RA (2006) Multichannel PCR-CE microdevice for genetic analysis. Anal Chem 78:5474–5479CrossRefPubMedGoogle Scholar
  84. 84.
    Taylor SC, Laperriere G, Germain H (2017) Droplet digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Sci Rep 7:2409–2416CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Hoffmann J, Trotter M, von Stetten F, Zengerle R, Roth G (2012) Solid-phase PCR in a picowell array for immobilizing and arraying 100 000 PCR products to a microscope slide. Lab Chip 12: 3049–3054Google Scholar
  86. 86.
    Bhat S, McLaughlin JLH, Emslie KR (2011) Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction. Analyst 136:724–732CrossRefPubMedGoogle Scholar
  87. 87.
    Chin WH, Sun Y, Høgberg J, Hung TQ, Wolff A, Bang DD (2017) Solid-phase PCR for rapid multiplex detection of salmonella spp. at the subspecies level, with amplification efficiency comparable to conventional PCR. Anal Bioanal Chem 409:2715–2726CrossRefPubMedGoogle Scholar
  88. 88.
    Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta 181:1715–1723Google Scholar
  89. 89.
    Khodakov DA, Ellis AV (2014) Recent developments in nucleic acid identification using solid-phase enzymatic assays. Microchim Acta 181:1633–1646CrossRefGoogle Scholar
  90. 90.
    Mercier JF, Slater GW, Mayer P (2003) Solid phase DNA amplification: a simple Monte Carlo lattice model. Biophys J 85:2075–2086CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Shin Y, Perera AP, Kim KW, Park MK (2013) Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip 13:2106–2114CrossRefPubMedGoogle Scholar
  92. 92.
    Tran BM, Nam NN, Son SJ, Lee NY (2018) Nanoporous anodic aluminum oxide internalized with gold nanoparticles for on-chip PCR and direct detection by surface-enhanced Raman scattering. Analyst 143:808–812CrossRefPubMedGoogle Scholar
  93. 93.
    Kim YT, Lee D, Heo HY, Kim DH, Seo TS (2015) An integrated slidable and valveless microdevice with solid phase extraction, polymerase chain reaction, and immunochromatographic strip parts for multiplex colorimetric pathogen detection. Lab Chip 15:4148–4155CrossRefPubMedGoogle Scholar
  94. 94.
    Crews N, Wittwer C, Palais R, Gale B (2008) Product differentiation during continuous-flow thermal gradient PCR. Lab Chip 8:919–924CrossRefPubMedGoogle Scholar
  95. 95.
    Trinh KTL, Lee NY (2018) Glass-polytetrafluoroethylene-glass based sandwich microdevice for continuous-flow polymerase chain reaction and its application for fast identification of foodborne pathogens. Talanta 176:544–550CrossRefPubMedGoogle Scholar
  96. 96.
    Almassian DR, Cockrell LM, Nelson WM (2013) Portable nucleic acid thermocyclers. Chem Soc Rev 42:8769–8798CrossRefPubMedGoogle Scholar
  97. 97.
    Park N, Kim S, Hahn JH (2003) Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal Chem 75:6029–6033CrossRefPubMedGoogle Scholar
  98. 98.
    Sun Y, Satyanarayan MVD, Nguyen NT, Kwok YC (2008) Continuous flow polymerase chain reaction using a hybrid PMMA-PC microchip with improved heat tolerance. Sens Actuators B 130:836–841CrossRefGoogle Scholar
  99. 99.
    Zhang Q, Wang W, Zhang H, Wang Y (2002) Temperature analysis of continuous-flow micro-PCR based on FEA. Sens Actuators B 82:75–81CrossRefGoogle Scholar
  100. 100.
    Obeid PJ, Christopoulos TK, Crabtrees HJ, Backhouse CJ (2003) Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem 75:288–295CrossRefPubMedGoogle Scholar
  101. 101.
    Schaerli Y, Wootton RC, Robinson T, Stein V, Dunsby C, Neil MAA, French PMW, de Mello AJ, Abell C, Hollfelder F (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81:302–306CrossRefPubMedGoogle Scholar
  102. 102.
    Sun K, Yamaguchi A, Ishida Y, Matsuo S, Misawa H (2002) A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens Actuators B 84:283–289CrossRefGoogle Scholar
  103. 103.
    Burns MA, Mastrangelo CH, Sammarco TS, Man FP, Webster JR, Johnson BN, Foerster B, Jones D, Fields Y, Kaiser AR, Burke DT (1996) Microfabricated structures for integrated DNA analysis. Proc Natl Acad Sci U S A 93:5556–5561CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Friedman NA, Meldrum DR (1998) Capillary tube resistive thermal cycling. Anal Chem 70:2997–3002CrossRefPubMedGoogle Scholar
  105. 105.
    Oda RP, Strausbauch MA, Huhmer AFR, Borson N, Jurrens SR, Craighead J, Wettstein PJ, Eckloff B, Kline B, Landers JP (1998) Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal Chem 70:4361–4368CrossRefPubMedGoogle Scholar
  106. 106.
    Roper MG, Easley CJ, Legendre LA, Humphrey JAC, Landers JP (2007) Infrared temperature control system for a completely noncontact polymerase chain reaction in microfluidic chip. Anal Chem 79:1294–1300CrossRefPubMedGoogle Scholar
  107. 107.
    Legendre LA, Bienvenue JM, Roper MG, Ferrance JP, Landers JP (2006) A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal Chem 78:1444–1451CrossRefPubMedGoogle Scholar
  108. 108.
    Ke C, Berney H, Mathewson A, Sheehan MM (2004) Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler. Sens Actuators B 102:308–314CrossRefGoogle Scholar
  109. 109.
    Shaw KJ, Docker PT, Yelland JV, Dyer CE, Greenman J, Greenway GM, Haswell SJ (2010) Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip 10:1725–1728CrossRefPubMedGoogle Scholar
  110. 110.
    Issadore D, Humphry KJ, Brown KA, Sandberg L, Weitz DA, Westervelt RM (2009) Microwave dielectric heating of drops in microfluidic devices. Lab Chip 9:1701–1706CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Lao AIK, Lee TMH, Hsing IM, Ip NY (2000) Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sens Actuators 84:11–17CrossRefGoogle Scholar
  112. 112.
    Trau D, Lee TMH, Lao AIK, Lenigk R, Hsing IM, Ip NY, Carles MC, Sucher NJ (2002) Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray. Anal Chem 74:3168–3173CrossRefPubMedGoogle Scholar
  113. 113.
    Baek S, Min J, Park JH (2010) Wireless induction heating in a microfluidic device for cell lysis. Lab Chip 10:909–917CrossRefPubMedGoogle Scholar
  114. 114.
    Debjani P, Venkataraman V (2002) A portable battery-operated chip thermocycler based on induction heating. Sens Actuators A 102:151–156CrossRefGoogle Scholar
  115. 115.
    Lopez J, Prezioso V (2001) A better way to optimize: two-step gradient PCR. Eppendorf BioNews Appl Notes 16:3–4Google Scholar
  116. 116.
    Krishnan M, Ugaz VM, Burns MA (2002) PCR in a Rayleigh-Bénard convection cell. Science 298:793CrossRefPubMedGoogle Scholar
  117. 117.
    Chou WP, Chen PH, Miao M, Kuo LS, Yeh SH, Chen PJ (2011) Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. BioTechniques 50:52–57CrossRefPubMedGoogle Scholar
  118. 118.
    Krishnan M, Agrawal N, Burns MA, Ugaz VM (2004) Reactions and fluidics in miniaturized natural convection systems. Anal Chem 76:6254–6265CrossRefPubMedGoogle Scholar
  119. 119.
    Crews N, Wittwer C, Gale B (2008) Continuous-flow thermal gradient PCR. Biomed Microdevices 10:187–195CrossRefPubMedGoogle Scholar
  120. 120.
    Thomas S, Orozco RL, Ameel T (2017) Microscale thermal gradient continuous-flow PCR: a guide to operation. Sens Actuators B 247:889–895CrossRefGoogle Scholar
  121. 121.
    Wu W, Lee NY (2011) Three-dimensional on-chip continuous-flow polymerase chain reaction employing a single heater. Anal Bioanal Chem 400:2053–2060CrossRefPubMedGoogle Scholar
  122. 122.
    Wu W, Trinh KTL, Lee NY (2012) Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR. Analyst 137:2069–2076CrossRefPubMedGoogle Scholar
  123. 123.
    Trinh KTL, Wu W, Lee NY (2014) Bent polydimethylsiloxane–polycarbonate hybrid microdevice for on-chip flow-through polymerase chain reaction employing a single heater. Microchim Acta 181:1697–1705CrossRefGoogle Scholar
  124. 124.
    Trinh KTL, Wu W, Lee NY (2014) Planar poly(dimethylsiloxane) (PDMS)–glass hybrid microdevice for a flow-through polymerase chain reaction (PCR) employing a single heater assisted by an intermediate metal alloy layer for temperature gradient formation. Sens Actuators B 190:177–184CrossRefGoogle Scholar
  125. 125.
    Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, Ross BM, Ricco AJ, Lee LP (2011) Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11:845–850CrossRefPubMedGoogle Scholar
  126. 126.
    Qin L, Vermesh O, Shi Q, Heath JR (2009) Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab Chip 9:2016–2020CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Wheeler EK, Benett W, Stratton P, Richards J, Chen A, Christian A, Ness KD, Ortega J, Li LG, Weisgraber TH, Goodson K, Milanovich F (2004) Convectively driven polymerase chain reaction thermal cycler. Anal Chem 76:4011–4016CrossRefPubMedGoogle Scholar
  128. 128.
    Chung KH, Park SH, Choi YH (2010) A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10:202–210CrossRefPubMedGoogle Scholar
  129. 129.
    Chen Z, Qian S, Abrams WR, Malamud D, Bau HH (2004) Thermosiphon-based PCR reactor: experiment and modeling. Anal Chem 76:3707–3715CrossRefPubMedGoogle Scholar
  130. 130.
    Tachibana H, Saito M, Tsuji K, Yamanaka K, Hoa LQ, Tamiya E (2015) Self-propelled continuous-flow PCR in capillary-driven microfluidic device: microfluidic behavior and DNA amplification. Sens Actuators B 206:303–310CrossRefGoogle Scholar
  131. 131.
    Curcio M, Roeraade J (2003) Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Anal Chem 75:1–7CrossRefPubMedGoogle Scholar
  132. 132.
    Chou CF, Changrani R, Roberts P, Sadler D, Burdon J, Zenhausern F, Lin S, Mulholland A, Swami N, Terbrueggen R (2002) A miniaturized cyclic PCR device – modeling and experiments. Microelectron Eng 61-62:921–925CrossRefGoogle Scholar
  133. 133.
    Wu W, Trinh KTL, Lee NY (2012) Hand-held syringe as a portable plastic pump for on-chip continuous-flow PCR: miniaturization of sample injection device. Analyst 137:983–990CrossRefPubMedGoogle Scholar
  134. 134.
    Wu W, Trinh KTL, Lee NY (2015) Flow-through polymerase chain reaction inside a seamless 3D helical microreactor fabricated utilizing a silicone tube and a paraffin mold. Analyst 140:1416–1420CrossRefPubMedGoogle Scholar
  135. 135.
    Wu W, Lee NY (2013) Two-layer microdevice for parallel flow-through PCRs employing plastic syringes for semi-automated sample injection and a single heater for amplification: toward process simplification and system. Sensors Actuators B 181:756–765CrossRefGoogle Scholar
  136. 136.
    Wu W, Trinh KTL, Zhang Y, Lee NY (2015) Portable plastic syringe as a self-actuated pump for long-distance uniform delivery of liquid inside a microchannel and its application for flow-through polymerase chain reaction on chip. RSC Adv 5:12071–12077CrossRefGoogle Scholar
  137. 137.
    Trinh KTL, Wu W, Lee NY (2017) Fabrication of a 3D Teflon microdevice for energy free homogeneous liquid flow inside a long microchannel and its application to continuous-flow PCR. RSC Adv 7:10624–10630CrossRefGoogle Scholar
  138. 138.
    Trinh KTL, Lee NY (2017) A portable microreactor with minimal accessories for polymerase chain reaction: application to the determination of foodborne pathogens. Microchim Acta 184:4225–4233CrossRefGoogle Scholar
  139. 139.
    Petralia S, Verardo R, Klaric E, Cavallaro S, Alessi E, Schneider C (2013) In-check system: a highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection of nucleic acids directly from biological samples. Sens Actuators B 187:99–105CrossRefGoogle Scholar
  140. 140.
    Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831CrossRefPubMedGoogle Scholar
  141. 141.
    Hwang KY, Jeong SY, Kim YR, Namkoong K, Lim HK, Chung WS, Kim JH, Huh N (2011) Rapid detection of bacterial cell from whole blood: integration of DNA sample preparation into single micro-PCR chip. Sens Actuators B 154:46–51CrossRefGoogle Scholar
  142. 142.
    Easley CJ, Karlinsey JM, Bienvenue JM, Legendre LA, Roper MG, Feldmant SH, Hughes MA, Hewlett EL, Merkel TJ, Ferrance JP, Landers JP (2006) A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc Natl Acad Sci U S A 103:19272–19277CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li XJ, Wan Abas WAB, Pingguan-Murphy B, Xu F (2016) An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16:611–621CrossRefPubMedGoogle Scholar
  144. 144.
    Meyer R (1999) Development and application of DNA analytical methods for the detection of GMOs in food. Food Control 10:391–399CrossRefGoogle Scholar
  145. 145.
    Tang R, Yang H, Gong Y, You ML, Liu Z, Choi JR, Wen T, Qu Z, Mei Q, Xu F (2017) A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab Chip 17:1270–1279CrossRefPubMedGoogle Scholar
  146. 146.
    He Y, Zeng K, Gurung AS, Baloda M, Xu H, Xhang X, Liu G (2010) Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem 82:7169–7177CrossRefPubMedGoogle Scholar
  147. 147.
    Aveyard J, Mehrabi M, Cossins A, Braven H, Wilson R (2007) One step visual detection of PCR products with gold nanoparticles and a nucleic acid lateral flow (NALF) device. Chem Commun 41:4251–4253CrossRefGoogle Scholar
  148. 148.
    Nagatani N, Yamanaka K, Ushijima H, Koketsu R, Sasaki T, Ikuta K, Saito M, Miyahara T, Tamiya E (2012) Detection of influenza virus using a lateral flow immunoassay for amplified DNA by a microfluidic RT-PCR chip. Analyst 137:3422–3426CrossRefPubMedGoogle Scholar
  149. 149.
    Chamorro-Garcia A, de la Escosura-Muñiz A, Espinosa-Castañeda M, Rodriguez-Hernandez CJ, de Torres C, Merkoçi A (2016) Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. Nanomedicine 12:53–61CrossRefPubMedGoogle Scholar
  150. 150.
    Du G, Zhang D, Xia B, Xu L, Wu S, Zhan S, Ni X, Zhou X, Wang L (2016) A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Microchim Acta 183:2251–2258CrossRefGoogle Scholar
  151. 151.
    Lafleur JP, Senkbeil S, Jensen TG, Kutter JP (2012) Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 12:4651–4656CrossRefPubMedGoogle Scholar
  152. 152.
    Wang L, Ma W, Xu L, Chen W, Zhu Y, Xu C, Kotov NA (2010) Nanoparticle-based environmental sensors. Mater Sci Eng R Rep 70:265–274CrossRefGoogle Scholar
  153. 153.
    Rowland CE, Brown CW III, Delehanty JB, Medintz IL (2016) Nanomaterial-based sensors for the detection of biological threat agents. Mater Today 19:464–477CrossRefGoogle Scholar
  154. 154.
    Upadhyayula VK (2012) Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review. Anal Chim Acta 715:1–18CrossRefPubMedGoogle Scholar
  155. 155.
    Stephen Inbaraj B, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28CrossRefPubMedGoogle Scholar
  156. 156.
    Du D, Wang L, Shao Y, Wang J, Engelhard MH, Lin Y (2011) Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53. Anal Chem 83:746–752CrossRefPubMedGoogle Scholar
  157. 157.
    Li W, Wu P, Zhang H, Cai C (2012) Signal amplification of graphene oxide combining with restriction endonuclease for site-specific determination of DNA methylation and assay of methyltransferase activity. Anal Chem 84:7583–7590CrossRefPubMedGoogle Scholar
  158. 158.
    Du D, Yang Y, Lin Y (2012) Graphene-based materials for biosensing and bioimaging. MRS Bull 37:1290–1296CrossRefGoogle Scholar
  159. 159.
    Tang D, Yuan R, Chai Y (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80:1582–1588CrossRefPubMedGoogle Scholar
  160. 160.
    Zhao YT, Zhang WY, Lin Y, Du D (2013) The vital function of Fe3O4@au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5:1121–1126CrossRefPubMedGoogle Scholar
  161. 161.
    Wu Y, Chen C, Liu S (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600–1607CrossRefPubMedGoogle Scholar
  162. 162.
    Yuan L, Hua X, Wu Y, Pan X, Liu S (2011) Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem 83:6800–6809CrossRefPubMedGoogle Scholar
  163. 163.
    Du D, Chen W, Zhang W, Liu D, Li H, Lin Y (2010) Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion. Biosens Bioelectron 25:1370–1375CrossRefPubMedGoogle Scholar
  164. 164.
    Wang J, Liu G, Wu H, Lin Y (2008) Quantum-dot-based electrochemical immunoassay for high-throughput screening of the prostate-specific antigen. Small 4:82–86CrossRefPubMedGoogle Scholar
  165. 165.
    Du D, Chen A, Xie Y, Zhang A, Lin Y (2011) Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase. Biosens Bioelectron 26:3857–3863CrossRefPubMedGoogle Scholar
  166. 166.
    Ahmed S, Bui MP, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263CrossRefPubMedGoogle Scholar
  167. 167.
    Klasner SA, Price AK, Hoeman KW, Wilson RS, Bell KJ, Culbertson CT (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397:1821–1829CrossRefPubMedGoogle Scholar
  168. 168.
    Wang W, Wu WY, Wang W, Zhu JJ (2010) Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. J Chromatogr A 1217:3896–3899CrossRefPubMedGoogle Scholar
  169. 169.
    Abbas A, Fei M, Tian L, Singamaneni S (2013) Trapping proteins within gold nanoparticles assemblies: dynamically tunable hot-spots for nanobiosensing. Plasmonics 8:537–544CrossRefGoogle Scholar
  170. 170.
    Abbas A, Kattumenu R, Tian L, Singamaneni S (2013) Molecular linker-mediated self-assembly of gold nanoparticles: understanding and controlling the dyanmics. Langmuir 29:56–64CrossRefPubMedGoogle Scholar
  171. 171.
    Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal Chem 83:8953–8958CrossRefPubMedGoogle Scholar
  172. 172.
    Tian L, Morrissey JJ, Kattumenu R, Gandra N, Kharasch ED, Singamaneni S (2012) Bioplasmonic paper as a platform for detection of kidney cancer biomarkers. Anal Chem 84:9928–9934CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82:9626–9630CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Wu Y, Xue P, Kang Y, Hui KM (2013) Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Anal Chem 85:8661–8668CrossRefPubMedGoogle Scholar
  175. 175.
    Choi JR, Hu J, Gong Y, Feng S, Wan Abas WAB, Pingguan-Murphy B, Xu F (2016) An integrated lateral flow assay for effective DNA amplification and detection at the point of care. Analyst 141:2930–2939CrossRefPubMedGoogle Scholar
  176. 176.
    Jauset-Rubio M, Svobodová M, Mairal T, McNeil C, Keegan N, Saeed A, Abbas MN, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O’Sullivan CK (2016) Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay. Sci Rep 6:37732CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Kaur J, Singh KV, Boro R, Thampi KR, Raje M, Varshney GC, Suri CR (2007) Immunochromatographic dipstick assay format using gold nanoparticles labeled protein−hapten conjugate for the detection of atrazine. Environ Sci Technol 41:5028–5036CrossRefPubMedGoogle Scholar
  178. 178.
    Crannell ZA, Rohrman B, Richards-Kortum R (2014) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PLoS One 9:e112146CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioNano TechnologyGachon UniversitySeongnam-siSouth Korea

Personalised recommendations