Skip to main content
Log in

Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A flower-like Au/Cu alloy nanocomposite (Au/Cu NFs) was synthesized and used in an electrochemiluminescence (ECL) based method for sensitive determination of the dye Sudan I. The Au-g-C3N4 nanosheets as an ECL emitter were prepared by electrostatic adsorption between gold nanoparticles and g-C3N4. They form a film on a glassy carbon electrode (GCE) and then can be connected with Sudan I antigen via gold-nitrogen bond and amidation reactions. The Au/Cu NFs combined with Sudan I antibody also via the Au-N bond and was introduced into the modified GCE by specific recognition between the antibody and the antigen. The overlap between emission spectra of the Au-g-C3N4 nanosheets and absorption spectra of Au/Cu NFs enabled the appearance of ECL resonance energy transfer process. That is, when the Sudan I analyte not present, the ECL was weakened due to absorption by the gray Au/Cu NFs on applying voltages from −1.7 V to 0 V. Conversely, the Au/Cu NFs on the GCE are reduced due to the competition for the antibody between the analyte and the antigen. A strong green ECL emission was obtained. The ECL response is linear in the 0.5 pg mL−1 to 100 ng mL−1 Sudan I concentration range, and the detection limit is 0.17 pg mL−1.

An Au/Cu alloy flower-like nanocomposite (Au/Cu NFs) is firstly synthesized as an acceptor to constitute an electrochemiluminescence-resonance energy transfer (ECL-RET) system for sensitive measurement of Sudan I, while Au nanoparticles (Au NPs) functionalized graphitic carbon nitride (g-C3N4) acted as a donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rebane R, Leito I, Yurchenko S, Herodes K (2010) A review of analytical techniques for determination of Sudan I–IV dyes in food matrixes. J Chromatogr A 1217:2747–2757

    Article  CAS  PubMed  Google Scholar 

  2. Rafii F, Hall JD, Cerniglia CE (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol 35:897–901

    Article  CAS  PubMed  Google Scholar 

  3. Stiborova M, Martinek V, Rydlova H, Hodek P, Frei E (2002) Sudan I is a potential carcinogen for humans: evidence for its metabolic activation and Detoxication by human recombinant cytochrome P450 1A1 and liver Microsomes. Cancer Res 62:5678–5684

    CAS  PubMed  Google Scholar 

  4. Møller P, Wallin H (2000) Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat Res 462:13–30

    Article  PubMed  Google Scholar 

  5. Wang YZ, Yang H, Wang B, Deng AP (2011) A sensitive and selective direct competitive enzyme-linked immunosorbent assay for fast detection of Sudan I in food samples. J Sci Food Agric 91:1836–1842

    Article  CAS  PubMed  Google Scholar 

  6. He LM, Su YJ, Fang BH, Shen XG, Zeng ZL, Liu YH (2007) Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography–mass spectrometry. Anal Chim Acta 594:139–146

    Article  CAS  PubMed  Google Scholar 

  7. Ertaş E, Özer H, Alasalvar C (2007) A rapid HPLC method for determination of Sudan dyes and Para red in red chilli pepper. Food Chem 105:756–760

    Article  CAS  Google Scholar 

  8. Cornet V, Govaert Y, Moens G, Loco JV, Egroodt JMD (2006) Development of a fast analytical method for the determination of Sudan dyes in chili- and curry-containing foodstuffs by high-performance liquid chromatography- photodiode array detection. Food Chem 54:639–644

    Article  CAS  Google Scholar 

  9. Ling Y, Li JX, Qu F, Li NB, Luo HQ (2014) Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters. Microchim Acta 181:1069–1075

    Article  CAS  Google Scholar 

  10. Zhang P, Li Z, Wang H, Zhuo Y, Yuan R, Chai YQ (2017) DNA nanomachine-based regenerated sensing platform: a novel electrochemiluminescence resonance energy transfer strategy for ultra-high sensitive detection of microRNA from cancer cells. Nanoscale 9:2310–2316

    Article  CAS  PubMed  Google Scholar 

  11. Jiang XY, Wang HJ, Wang HJ, Zhuo Y, Yuan R, Chai YQ (2016) Self-enhanced N-(aminobutyl)-N-(ethylisoluminol) derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidise. Nanoscale 8:8017–8023

    Article  CAS  PubMed  Google Scholar 

  12. Dong YQ, Wu H, Shang PX, Zeng XT, Chi YW (2015) Immobilizing water-soluble graphene quantum dots with gold nanoparticles for a low potential electrochemiluminescence immunosensor. Nanoscale 7:16366–16371

    Article  CAS  PubMed  Google Scholar 

  13. Ma MN, Zhang X, Zhuo Y, Chai YQ, Yuan R (2015) An amplified electrochemiluminescent aptasensor using Au nanoparticles capped by 3,4,9,10- perylene tetracarboxylic acid-thiosemicarbazide functionalized C60 nanocomposites as a signal enhancement tag. Nanoscale 7:2085–2092

    Article  CAS  PubMed  Google Scholar 

  14. Xu JJ, Jiang DP, Qin YL, Xia J, Jiang DC, Chen HY (2017) C3N4 Nanosheet modified microwell Array with enhanced Electrochemiluminescence for Total analysis of cholesterol at single cells. Anal Chem 89:2216–2220

    Article  CAS  PubMed  Google Scholar 

  15. Ou X, Tan XR, Liu XF, Lu QY, Chen SH, Wei SP (2015) A signal-on electrochemiluminescence biosensor for detecting con a using phenoxy dextran-graphite-like carbon nitride as signal probe. Biosens Bioelectron 70:89–97

    Article  CAS  PubMed  Google Scholar 

  16. Cheng CM, Huang Y, Tian XQ, Zheng BZ, Li Y, Yuan HY, Xiao D, Xie SP, Choi MMF (2012) Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem 84:4754–4759

    Article  CAS  PubMed  Google Scholar 

  17. Zuo FM, Jin L, Fu XM, Zhang H, Yuan R, Chen SH (2017) An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sensors Actuators B Chem 244:282–289

    Article  CAS  Google Scholar 

  18. Cheng CM, Huang Y, Wang J, Zheng BZ, Yuan HY, Xiao D (2013) Anodic electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its sensing for rutin. Anal Chem 85:2601–2605

    Article  CAS  PubMed  Google Scholar 

  19. Guo ZY, Wu L, Hu YF, Wang S, Li X (2017) Potential-resolved “in-electrode” type electrochemiluminescence immunoassay based on functionalized g-C3N4 nanosheet and Ru-NH2 for simultaneous determination of dual targets. Biosens Bioelectron 95:27–33

    Article  CAS  PubMed  Google Scholar 

  20. Ge L, Han CC, Liu J, Li YF (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A 409:215–222

    Article  CAS  Google Scholar 

  21. Wang Y, Yao J, Li HR, Su DS, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365

    Article  CAS  PubMed  Google Scholar 

  22. Ge L, Han CC (2012) Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity. Appl Catal B 117:268–274

    Article  CAS  Google Scholar 

  23. Chen LC, Zeng XT, Si P, Chen YM, Chi YW, Kim DH (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86:4188–4195

    Article  CAS  PubMed  Google Scholar 

  24. Wu MS, Shi HW, Xu JJ, Chen HY (2011) CdS quantum dots/Ru(bpy)3 2+ electrochemiluminescence resonance energy transfer system for sensitive cytosensing. Chem Commun 47:7752–7754

    Article  CAS  Google Scholar 

  25. Ma HM, Li XJ, Yan T, Li Y, Liu HY, Zhang Y, Wu D, Du B, Wei Q (2016) Sensitive insulin detection based on Electrogenerated Chemiluminescence resonance energy transfer between Ru(bpy)3 2+ and au nanoparticle-doped β-Cyclodextrin-Pb (II) metal–organic framework. ACS Appl Mater Interfaces 8:10121–10127

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Zhuo Y, Liao N, Chai YQ, Yuan R (2014) Ultrasensitive immunoassay based on a pseudobienzyme amplifying system of choline oxidase and luminol-reduced Pt@Au hybrid nanoflowers. Chem Commun 50:14627–14630

    Article  CAS  Google Scholar 

  27. Zhai QF, Xing HH, Zhang XW, Li J, Wang E (2017) Enhanced Electrochemiluminescence behavior of gold-silver bimetallic nanoclusters and its sensing application for mercury(II). Anal Chem 89:7788–7794

    Article  CAS  PubMed  Google Scholar 

  28. Zhu WJ, Wang C, Li XJ, Khan MS, Sun X, Ma H, Fan DW, Wei Q (2017) Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection. Biosens Bioelectron 97:115–121

    Article  CAS  PubMed  Google Scholar 

  29. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) XPS study of the Cu@Cu2O core-shell nanoparticles. Appl Surf Sci 255:2730–2734

    Article  CAS  Google Scholar 

  30. Hu LY, Zheng J, Zhao K, Deng AP, Li JG (2018) An ultrasensitive electrochemiluminescent immunosensor based on graphene oxide coupled graphite-like carbon nitride and multiwalled carbon nanotubes-gold for the detection of diclofenac. Biosens Bioelectron 101:260–267

    Article  CAS  PubMed  Google Scholar 

  31. Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, Chen HY (2015) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 88:937–944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We really appreciate the support from the Science Fund from the National Natural Science Foundation of China (No.21175097, No. 31772053), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201207), the Project of State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1716), the Suzhou Industry (SYG201636), State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.YX10900212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anping Deng or Jianguo Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.42 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yao, X., Zhou, X. et al. Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers. Microchim Acta 185, 275 (2018). https://doi.org/10.1007/s00604-018-2790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2790-x

Keywords

Navigation