Advertisement

Microchimica Acta

, 185:254 | Cite as

Fluorometric aptamer based assay for ochratoxin A based on the use of exonuclease III

  • Renjie Liu
  • Hua Wu
  • Lei Lv
  • Xiaojiao Kang
  • Chengbi Cui
  • Jin Feng
  • Zhijun Guo
Original Paper

Abstract

This study describes an aptamer based assay for the mycotoxin ochratoxin A (OTA). The method is based on the use of an OTA-specific aptamer, exonuclease (Exo) III, SYBR Gold as a fluorescent probe, and a complementary strand that specifically combines with the aptamer. In the presence of OTA, the aptamer and OTA hybridize, thereby resulting in the formation of ssDNA, which is not digested by Exo III. Intense fluorescence is observed after addition of SYBR Gold (best measured at excitation/emission wavelengths of 495/540 nm). Fluorescence increases linearly with the log of the OTA concentration in the range from 8 to 1000 ng·mL−1. The detection limit is 4.7 ng·mL−1. The assay was applied to the determination of OTA in diluted [2%(v/v)] red wine, and recoveries and RSDs ranged between 93.5% and 113.8%, and between 3.2% and 5.7%, respectively.

Graphical abstract

In the presence of ochratoxin A (OTA), specific combinations of aptamer and OTA may occur and result in DNA double strands being untied, which avoids being digested by Exo III. Intense fluorescence is observed after SYBR Gold addition.

Keywords

Mycotoxin Fluorescent probe Exo III Complementary strand 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 31460423 and 31360384), the department of Sciences & Technology of Jilin Province (20160520047JH) and the department of education of Jilin Province (2016252).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2786_MOESM1_ESM.doc (180 kb)
ESM 1 (DOC 179 kb)

References

  1. 1.
    Zhang C, Tang J, Huang L, Li Y, Tang D (2017) In-situ amplified voltammetric immunoassay for ochratoxin a by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184(7):2445–2453CrossRefGoogle Scholar
  2. 2.
    Jodra A, Hervas M, Angel Lopez M, Escarpa A (2015) Disposable electrochemical magneto immunosensor for simultaneous simplified calibration and determination of Ochratoxin a in coffee samples. Sensor Actuators B Chem 221:777–783CrossRefGoogle Scholar
  3. 3.
    Wang B, Wu Y, Chen Y, Weng B, Xu L, Li C (2016) A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosens Bioelectron 81:125–130CrossRefPubMedGoogle Scholar
  4. 4.
    Guo ZJ, Ren JT, Wang JH, Wang EK (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin a. Talanta 85(5):2517–2521CrossRefPubMedGoogle Scholar
  5. 5.
    Monaci L, Palmisano F (2004) Determination of ochratoxin a in foods: state-of-the-art and analytical challenges. Anal Bioanal Chem 378(1):96–103CrossRefPubMedGoogle Scholar
  6. 6.
    Pittet A, Royer D (2002) Rapid, low cost thin-layer chromatographic screening method for the detection of ochratoxin a in green coffee at a control level of 10 mu g/kg. J Agric Food Chem 50(2):243–247CrossRefPubMedGoogle Scholar
  7. 7.
    Flajs D, Domijan AM, Ivic D, Cvjetkovic B, Peraica M (2009) ELISA and HPLC analysis of ochratoxin a in red wines of Croatia. Food Control 20(6):590–592CrossRefGoogle Scholar
  8. 8.
    Zhu WY, Ren C, Nie Y, Xu Y (2016) Quantification of ochratoxin a in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method. Food Control 64:37–44CrossRefGoogle Scholar
  9. 9.
    Dai S, Wu S, Duan N, Chen J, Zheng Z, Wang Z (2017) An ultrasensitive aptasensor for Ochratoxin a using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron 91(Supplement C):538–544CrossRefPubMedGoogle Scholar
  10. 10.
    Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491CrossRefGoogle Scholar
  11. 11.
    Abnous K, Danesh NM, Alibolandi M, Ramezani M, Taghdisi SM (2017) Amperometric aptasensor for ochratoxin a based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker methylene blue. Microchim Acta 184(4):1151–1159CrossRefGoogle Scholar
  12. 12.
    Cetin AE, Coskun AF, Galarreta BC, Huang M, Herman D, Ozcan A, Altug H (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light-Sci Appl 3:e122CrossRefGoogle Scholar
  13. 13.
    Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149CrossRefPubMedGoogle Scholar
  14. 14.
    Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators B Chem 207:764–771CrossRefGoogle Scholar
  15. 15.
    Zhang D, Ma F, Zhang Q, C-y Z (2017) Highly sensitive detection of epidermal growth factor receptor in lung cancer cells by aptamer-based target−/probe-mediated cyclic signal amplification. Chem Commun 53(83):11496–11499CrossRefGoogle Scholar
  16. 16.
    Li N, Tittl A, Yue S, Giessen H, Song C, Ding B, Liu N (2014) DNA-assembled bimetallic plasmonic nanosensors. Light-Sci Appl 3:e226CrossRefGoogle Scholar
  17. 17.
    Liu K-C, Zhang Z-Y, Shan C-X, Feng Z-Q, Li J-S, Song C-L, Bao Y-N, Qi X-H, Dong B (2016) A flexible and superhydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection. Light-Sci Appl 5:e16136CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lv L, Li D, Liu R, Cui C, Guo Z (2017) Label-free aptasensor for ochratoxin a detection using SYBR gold as a probe. Sensors Actuators B Chem 246:647–652CrossRefGoogle Scholar
  19. 19.
    Zheng DM, Zou RX, Lou XH (2012) Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Anal Chem 84(8):3554–3560CrossRefPubMedGoogle Scholar
  20. 20.
    Vellaisamy K, Li G, Ko C-N, Zhong H-J, Fatima S, Kwan H-Y, Wong C-Y, Kwong W-J, Tan W, Leung C-H, Ma D-L (2018) Cell imaging of dopamine receptor using agonist labeling iridium(III) complex. Chem Sci 9(5):1119–1125CrossRefPubMedGoogle Scholar
  21. 21.
    Pino NW, Davis J III, Yu Z, Chan J (2017) NitroxylFluor: a thiol-based fluorescent probe for live-cell imaging of Nitroxyl. J Am Chem Soc 139(51):18476–18479CrossRefPubMedGoogle Scholar
  22. 22.
    Liu C, Yang C, Lu L, Wang W, Tan W, Leung C-H, Ma D-L (2017) Luminescent iridium(III) complexes as COX-2-specific imaging agents in cancer cells. Chem Commun 53(19):2822–2825CrossRefGoogle Scholar
  23. 23.
    Lincoln R, Greene LE, Zhang W, Louisia S, Cosa G (2017) Mitochondria alkylation and cellular trafficking mapped with a lipophilic BODIPY-Acrolein Fluorogenic probe. J Am Chem Soc 139(45):16273–16281CrossRefPubMedGoogle Scholar
  24. 24.
    Lu L, Wang M, Liu L-J, Leung C-H, Ma D-L (2015) Label-free luminescent switch-on probe for Ochratoxin a detection using a G-Quadruplex-selective iridium(III) complex. ACS Appl Mater Interfaces 7(15):8313–8318CrossRefPubMedGoogle Scholar
  25. 25.
    Lin S, Gao W, Tian Z, Yang C, Lu L, Mergny J-L, Leung C-H, Ma D-L (2015) Luminescence switch-on detection of protein tyrosine kinase-7 using a G-quadruplex-selective probe. Chem Sci 6(7):4284–4290CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yu Q, Gao PL, Zhang KY, Tong X, Yang HR, Liu SJ, Du J, Zhao Q, Huang W (2017) Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference. Light-Sci Appl 6:e17107CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ahmed R, Yetisen AK, Yun SH, Butt H (2017) Color-selective holographic retroreflector array for sensing applications. Light-Sci Appl 6:e16214CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lutsyk P, Arif R, Hruby J, Bukivskyi A, Vinijchuk O, Shandura M, Yakubovskyi V, Kovtun Y, Rance GA, Fay M, Piryatinski Y, Kachkovsky O, Verbitsky A, Rozhin A (2016) A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light-Sci Appl 5:e16028CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu J, Li W, Shen P, Li Y, Li Y, Deng Y, Zheng Q, Liu Y, Ding Z, Li J, Zheng T (2017) Microfluidic fabrication of photonic encoding magnetized silica microspheres for aptamer-based enrichment of Ochratoxin a. Microchim Acta 184(10):3755–3763CrossRefGoogle Scholar
  30. 30.
    Mahdi M, Mansour B, Afshin M (2016) Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Microchim Acta 183(12):3093–3099CrossRefGoogle Scholar
  31. 31.
    Dai S, Wu S, Duan N, Wang Z (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin a using upconversion nanoparticles and gold nanorods. Microchim Acta 183(6):1909–1916CrossRefGoogle Scholar
  32. 32.
    Wu H, Liu R, Kang X, Liang C, Lv L, Guo Z (2018) Fluorometric aptamer assay for ochratoxin a based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185(1)Google Scholar
  33. 33.
    Lv X, Zhang Y, Liu G, Du L, Wang S (2017) Aptamer-based fluorescent detection of ochratoxin a by quenching of gold nanoparticles. RSC Adv 7(27):16290–16294CrossRefGoogle Scholar
  34. 34.
    Lv Z, Chen A, Liu J, Guan Z, Zhou Y, Xu S, Yang S, Li C (2014) A simple and sensitive approach for Ochratoxin a detection using a label-free fluorescent Aptasensor. PLoS One 9(1):e85968CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Renjie Liu
    • 1
  • Hua Wu
    • 1
    • 2
  • Lei Lv
    • 2
  • Xiaojiao Kang
    • 3
  • Chengbi Cui
    • 2
  • Jin Feng
    • 2
  • Zhijun Guo
    • 2
  1. 1.Institute of food science and engineeringJilin agricultural UniversityChangchunChina
  2. 2.College of agricultureYanbian universityYanjiChina
  3. 3.School of Electrical Engineering and IntelligentizationDongguan University of TechnologyDongguanChina

Personalised recommendations