Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes

Abstract

A glassy carbon electrode was modified with a TiO2-gold nanoparticle hybrid integrated with multi-walled carbon nanotubes in a dihexadecylphosphate film (TiO2-Au NP-MWCNT-DHP/GCE) and applied to amperometric determination of ascorbic acid (AA). The modified sensor displays fast charge transfer and shows an irreversible anodic behavior for AA by cyclic voltammetry. Under optimal experimental conditions and using amperometry at 0.4 V, the analytical curve presented a statistical linear concentration range for AA from 5.0 to 51 μmol L−1, with a limit of detection of 1.2 μmol L−1. The electrode was successfully applied to the determination of AA in pharmaceutical and fruit juice without the need for major pretreatment of samples.

Schematic of a new sensing platform for ascorbic acid (AA). It is based on a glassy carbon electrode (GCE) modified with TiO2-Au nanoparticles integrated into carbon nanotubes in a dihexadecylphosphate film. The sensor was applied to amperometric determination of AA in juice and pharmaceutical samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Marsanasco M, Calabró V, Piotrkowski B, Chiaramoni NS, del V. Alonso S (2016) Fortification of chocolate milk with omega-3, omega-6, and vitamins E and C by using liposomes. Eur J Lipid Sci Technol 118:1271–1281. https://doi.org/10.1002/ejlt.201400663

    Article  CAS  Google Scholar 

  2. 2.

    Varvara M, Bozzo G, Disanto C, et al (2016) The use of the ascorbic acid as food additive and technical-legal issues. Ital J Food Saf 5.https://doi.org/10.4081/ijfs.2016.4313

  3. 3.

    Radovan C, Cofan C, Cinghita D (2008) Simultaneous determination of acetaminophen and ascorbic acid at an unmodified boron-doped diamond electrode by differential pulse voltammetry in buffered media. Electroanalysis 20:1346–1353. https://doi.org/10.1002/elan.200804188

    Article  CAS  Google Scholar 

  4. 4.

    Ngai KS, Tan WT, Zainal Z et al (2013) Voltammetry detection of ascorbic acid at glassy carbon electrode modified by single-walled carbon nanotube/zinc oxide. Int J Electrochem Sci 8:10557–10567

    CAS  Google Scholar 

  5. 5.

    Fernandes DM, Silva N, Pereira C, Moura C, Magalhães JMCS, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C (2015) MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors Actuators B Chem 218:128–136. https://doi.org/10.1016/j.snb.2015.05.003

    Article  CAS  Google Scholar 

  6. 6.

    Kannan P, John SA (2009) Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal Biochem 386:65–72. https://doi.org/10.1016/j.ab.2008.11.043

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Hosseini MG, Faraji M, Momeni MM (2011) Application of titanium oxide nanotube films containing gold nanoparticles for the electroanalytical determination of ascorbic acid. Thin Solid Films 519:3457–3461. https://doi.org/10.1016/j.tsf.2010.12.239

    Article  CAS  Google Scholar 

  8. 8.

    Aneesh PK, Nambiar SR, Rao TP, Ajayaghosh A (2014) Electrochemically synthesized partially reduced graphene oxide modified glassy carbon electrode for individual and simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Anal Methods 6:5322–5330. https://doi.org/10.1039/c4ay00043a

    Article  CAS  Google Scholar 

  9. 9.

    Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184:4603–4610. https://doi.org/10.1007/s00604-017-2510-y

    Article  CAS  Google Scholar 

  10. 10.

    Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182:1345–1352. https://doi.org/10.1007/s00604-015-1450-7

    Article  CAS  Google Scholar 

  11. 11.

    Parola S, Julián-López B, Carlos LD, Sanchez C (2016) Optical properties of hybrid organic-inorganic materials and their applications. Adv Funct Mater 26:6506–6544. https://doi.org/10.1002/adfm.201602730

    Article  CAS  Google Scholar 

  12. 12.

    Eder D (2010) Carbon nanotube−inorganic hybrids. Chem Rev 110:1348–1385. https://doi.org/10.1021/cr800433k

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Cho ES, Coates NE, Forster JD, Ruminski AM, Russ B, Sahu A, Su NC, Yang F, Urban JJ (2015) Engineering synergy: energy and mass transport in hybrid nanomaterials. Adv Mater 27:5744–5752. https://doi.org/10.1002/adma.201500130

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Kaur B, Srivastava R (2015) Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline–zeolite organic–inorganic hybrid materials. Sensors Actuators B Chem 211:476–488. https://doi.org/10.1016/j.snb.2015.01.081

    Article  CAS  Google Scholar 

  15. 15.

    Sarhangzadeh K (2015) Application of multi wall carbon nanotube–graphene hybrid for voltammetric determination of naproxen. J Iran Chem Soc 12:2133–2140. https://doi.org/10.1007/s13738-015-0690-0

    Article  CAS  Google Scholar 

  16. 16.

    Matthews FL, Rawlings RD (2008) Composite materials: engineering and science. CRC Press

  17. 17.

    Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601–619. https://doi.org/10.1007/s00216-005-0230-3

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Jiang K, Eitan A, Schadler LS, Ajayan PM, Siegel RW, Grobert N, Mayne M, Reyes-Reyes M, Terrones H, Terrones M (2003) Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes. Nano 3:275–277. https://doi.org/10.1021/NL025914T

    CAS  Article  Google Scholar 

  19. 19.

    Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242. https://doi.org/10.1021/LA049424N

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Xu C, Chen J, Cui Y, Han Q, Choo H, Liaw PK, Wu D (2006) Influence of the surface treatment on the deposition of platinum nanoparticles on the carbon nanotubes. Adv Eng Mater 8:73–77. https://doi.org/10.1002/adem.200500179

    Article  CAS  Google Scholar 

  21. 21.

    Zhou L, Ziong W, Liu S (2015) Preparation of a gold electrode modified with au–TiO2 nanoparticles as an electrochemical sensor for the detection of mercury(II) ions. J Mater Sicence 50:769–776. https://doi.org/10.1007/s10853-014-8636-y

    Article  CAS  Google Scholar 

  22. 22.

    Ampelli C, Leonardi SG, Genovese C, Lanzafame P, Perathoner S, Centi G, Neri G (2015) Monitoring of glucose in fermentation processes by using au/TiO2 composites as novel modified electrodes. J Appl Electrochem 45:943–951

    Article  CAS  Google Scholar 

  23. 23.

    Damato TC, de Oliveira CCS, Ando RA, Camargo PHC (2013) A facile approach to TiO2 colloidal spheres decorated with au nanoparticles displaying well-defined sizes and uniform dispersion. Langmuir 29:1642–1649. https://doi.org/10.1021/la3045219

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    dos Reis FVE, Antonin VS, Hammer P, Santos MC, Camargo PHC (2015) Carbon-supported TiO2–au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J Catal 326:100–106. https://doi.org/10.1016/j.jcat.2015.04.007

    Article  CAS  Google Scholar 

  25. 25.

    British Pharmacopoeia Commission (2013) British pharmacopoeia, 5th ed. The Stationery Office, London

  26. 26.

    Sartori ER, Vicentini FC, Fatibello-Filho O (2011) Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film. Talanta 87:235–242. https://doi.org/10.1016/j.talanta.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Ardila JA, Oliveira GG, Medeiros RA, Fatibello-Filho O (2013) Determination of gemfibrozil in pharmaceutical and urine samples by square-wave adsorptive stripping voltammetry using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film. J Electroanal Chem 690:32–37. https://doi.org/10.1016/J.JELECHEM.2012.11.038

    Article  CAS  Google Scholar 

  28. 28.

    Al-Otaify A, Leontiadou MA, dos Reis FVE et al (2014) Size dependence of ultrafast charge dynamics in monodisperse au nanoparticles supported on TiO2 colloidal spheres. Phys Chem Chem Phys 16:14189–14194. https://doi.org/10.1039/c4cp01475h

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Janegitz BC, Baccarin M, Raymundo-Pereira PA, dos Santos FA, Oliveira GG, Machado SAS, Lanza MRV, Fatibello-Filho O, Zucolotto V (2015) The use of dihexadecylphosphate in sensing and biosensing. Sensors Actuators B Chem 220:805–813. https://doi.org/10.1016/j.snb.2015.06.020

    Article  CAS  Google Scholar 

  30. 30.

    Suresh S, Gupta M, Kumar GA, Rao VK, Kumar O, Ghosal P (2012) Synergic effect of multi-walled carbon nanotubes and gold nanoparticles towards immunosensing of ricin with carbon nanotube–gold nanoparticles–chitosan modified screen printed electrode. Analyst 137:4086–4092. https://doi.org/10.1039/c2an35279f

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. John Wiley & Sons, Inc., New York

    Google Scholar 

  32. 32.

    Bard AJ, Faulkner LR (2001) Electrochemical methods : fundamentals and applications, 2nd edn. John Wiley & Sons, New York

    Google Scholar 

  33. 33.

    Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  34. 34.

    Yilmaz S, Sadikoglu M, Saglikoglu G et al (2008) Determination of ascorbic acid in tablet dosage forms and some fruit juices by DPV. Int J Electrochem Sci 3:1534–1542

    CAS  Google Scholar 

  35. 35.

    Miller JM, Miller JC (2010) Statistics and Chemometrics for analytical chemistry, 6th edn. Pearson, Harlow

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support and scholarships from the funding agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Grant numbers 2015/21366-9 and 2015/11452-5) and Fundação Araucária do Paraná. Special thanks to Juliane Cristina Leme for her kind help in statistical analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elen Romão Sartori.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 310 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scremin, J., Barbosa, E.C.M., Salamanca-Neto, C.A.R. et al. Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes. Microchim Acta 185, 251 (2018). https://doi.org/10.1007/s00604-018-2785-7

Download citation

Keywords

  • Electrochemical sensing
  • Modified electrode
  • Nanostructured material
  • Hybrid material
  • Pharmaceuticals