Microchimica Acta

, 185:244 | Cite as

MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma

  • Junxin Lai
  • Tingjian Wang
  • Hao Wang
  • Fengqiang Shi
  • Wei Gu
  • Ling Ye
Original Paper


The authors describe MnO nanoparticles (NPs) with unique excitation-dependent fluorescence across the entire visible spectrum. These NPs are shown to be efficient optical nanoprobe for multicolor cellular imaging. Synthesis of the NPs is accomplished by a thermal decomposition method. The MnO NPs exhibit a high r1 relaxivity of 4.68 mM−1 s−1 and therefore give an enhanced contrast effect in magnetic resonance (MR) studies of brain glioma. The cytotoxicity assay, hemolysis analysis, and hematoxylin and eosin (H&E) staining tests verify that the MnO NPs are biocompatible. In the authors’ perception, the simultaneous attributes of multicolor fluorescence and excellent MR functionality make this material a promising dual-modal nanoprobe for use in bio-imaging.

Graphical abstract

A direct method to synthesize fluorescent MnO NPs is reported. The NPs are biocompatible and have been successfully applied for multicolor cellular imaging and MR detection of brain glioma.


Mn-based nanoparticles Thermal decomposition T1 contrast agents r1 Relaxivity Optical imaging Tunable fluorescence Dual-modal nanoprobes Biocompatible C6 cells Brain tumor 



The authors gratefully acknowledge the financial supports from the Key Project from Beijing Commission of Education (KZ201610025022), National Natural Science Foundation of China (81271639) and Beijing Natural Science Foundation (7162023). The instrumental supports from the Core Facility Center (CFC) at Capital Medical University are greatly acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2779_MOESM1_ESM.doc (4.5 mb)
ESM 1 (DOC 4571 kb)


  1. 1.
    Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672CrossRefGoogle Scholar
  2. 2.
    Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16CrossRefGoogle Scholar
  3. 3.
    Garcia J, Tang T, Louie AY (2015) Nanoparticle-based multimodal PET/MRI probes. Nanomedicine 10(8):1343–1359CrossRefGoogle Scholar
  4. 4.
    Tempany C, Jayender J, Kapur T, Bueno R, Golby A, Agar N, Jolesz FA (2015) Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 121(6):817–827CrossRefGoogle Scholar
  5. 5.
    Keunen O, Taxt T, Grüner R, Lund-Johansen M, Tonn J-C, Pavlin T, Bjerkvig R, Niclou SP, Thorsen F (2014) Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 76:98–115CrossRefGoogle Scholar
  6. 6.
    Li D, Yang J, Wen S, Shen M, Zheng L, Zhang G, Shi X (2017) Targeted CT/MR dual mode imaging of human hepatocellular carcinoma using lactobionic acid-modified polyethyleneimine-entrapped gold nanoparticles. J Mater Chem B 5(13):2395–2401CrossRefGoogle Scholar
  7. 7.
    Hsu BYW, Ng M, Tan A, Connell J, Roberts T, Lythgoe M, Zhang Y, Wong SY, Bhakoo K, Seifalian AM (2016) pH-activatable MnO-based fluorescence and magnetic resonance bimodal nanoprobe for cancer imaging. Adv Healthc Mater 5(6):721–729CrossRefGoogle Scholar
  8. 8.
    Wang YM, Judkewitz B, DiMarzio CA, Yang C (2012) Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat Commun 3(928):928–936CrossRefGoogle Scholar
  9. 9.
    Caltagirone C, Bettoschi A, Garau A, Montis R (2015) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 44(14):4645–4671CrossRefGoogle Scholar
  10. 10.
    Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK (2016) The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nano 8(20):10491–10510Google Scholar
  11. 11.
    Bai J, Wang JT-W, Rubio N, Protti A, Heidari H, Elgogary R, Southern P, Al-Jamal WT, Sosabowski J, Shah AM (2016) Triple-modal imaging of magnetically-targeted nanocapsules in solid tumours in vivo. Theranostics 6(3):342–356CrossRefGoogle Scholar
  12. 12.
    Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53(4):1867–1879CrossRefGoogle Scholar
  13. 13.
    Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core–shell Fe3O4@ NaLuF4: Yb, Er/tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627CrossRefGoogle Scholar
  14. 14.
    Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L (2016) Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 469:86–92CrossRefGoogle Scholar
  15. 15.
    Shen J, Li Y, Zhu Y, Yang X, Yao X, Li J, Huang G, Li C (2015) Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. J Mater Chem B 3(14):2873–2882CrossRefGoogle Scholar
  16. 16.
    Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675CrossRefGoogle Scholar
  17. 17.
    Su X, Chan C, Shi J, Tsang M-K, Pan Y, Cheng C, Gerile O, Yang M (2017) A graphene quantum dot@ Fe3O4@ SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosens Bioelectron 92:489–495CrossRefGoogle Scholar
  18. 18.
    Kim E-J, Bhuniya S, Lee H, Kim HM, Shin WS, Kim JS, Hong KS (2016) In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced MRI and near-infrared fluorescence. ACS Appl Mater Interfaces 8(16):10266–10273CrossRefGoogle Scholar
  19. 19.
    Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 5(3):250–265Google Scholar
  20. 20.
    Gallo J, Alam IS, Lavdas I, Wylezinska-Arridge M, Aboagye EO, Long NJ (2014) RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging–the effect of PEG length in vivo. J Mater Chem B 2(7):868–876CrossRefGoogle Scholar
  21. 21.
    Abbasi AZ, Prasad P, Cai P, He C, Foltz WD, Amini MA, Gordijo CR, Rauth AM, Wu XY (2015) Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. J Control Release 209:186–196CrossRefGoogle Scholar
  22. 22.
    Zhen Z, Xie J (2012) Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics 2(1):45–54CrossRefGoogle Scholar
  23. 23.
    Meng J, Zhao Y, Li Z, Wang L, Tian Y (2016) Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent. RSC Adv 6(9):6878–6887CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Meng J, Sheng X, Tian Y (2016) Synthesis of ultrathin MnS shell on ZnS: Mn nanorods by one-step coating and doping for MRI and fluorescent imaging. Adv Optical Mater 4(7):1115–1123CrossRefGoogle Scholar
  25. 25.
    Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet–aptamer nanoprobe. J Am Chem Soc 136(32):11220–11223CrossRefGoogle Scholar
  26. 26.
    Chen N, Shao C, Li S, Wang Z, Qu Y, Gu W, Yu C, Ye L (2015) Cy5. 5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interface Sci 457:27–34CrossRefGoogle Scholar
  27. 27.
    Qi Y, Shao C, Gu W, Li F, Deng Y, Li H, Ye L (2013) Carboxylic silane-exchanged manganese ferrite nanoclusters with high relaxivity for magnetic resonance imaging. J Mater Chem B 1 (13):1846–1851Google Scholar
  28. 28.
    Hu S, Trinchi A, Atkin P, Cole I (2015) Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed 54(10):2970–2974CrossRefGoogle Scholar
  29. 29.
    Su Y, Zhang M, Zhou N, Shao M, Chi C, Yuan P, Zhao C (2017) Preparation of fluorescent N,P-doped carbon dots derived from adenosine 5′-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Microchim Acta 184(3):699–706CrossRefGoogle Scholar
  30. 30.
    Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368CrossRefGoogle Scholar
  31. 31.
    Xiao Q, Liang Y, Zhu F, Lu S, Huang S (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta 184(7):2429–2438CrossRefGoogle Scholar
  32. 32.
    Fayyadh TK, Ma F, Qin C, Zhang X, Li W, Zhang XE, Zhang Z, Cui Z (2017) Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes. Microchim Acta 184(8):2815–2824CrossRefGoogle Scholar
  33. 33.
    Li J, Jiao Y, Feng L, Zhong Y, Zuo G, Xie A, Dong W (2017) Highly N, P -doped carbon dots: rational design, photoluminescence and cellular imaging. Microchim Acta 184(8):2933–2940CrossRefGoogle Scholar
  34. 34.
    Syamchand SS, Aparna RS, Sony G (2017) Plasmonic enhancement of the upconversion luminescence in a Yb3+ and Ho3+ co-doped gold-ZnO nanocomposite for use in multimodal imaging. Microchim Acta 184(7):2255–2264CrossRefGoogle Scholar
  35. 35.
    Parvin N, Mandal TK (2017) Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Microchim Acta 184(4):1117–1125CrossRefGoogle Scholar
  36. 36.
    Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183(2):821–826CrossRefGoogle Scholar
  37. 37.
    Li Y, Chen R, Li Y, Sharafudeen K, Liu S, Wu D, Wu Y, Qin X, Qiu J (2015) Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells. Microchim Acta 182(9–10):1827–1834CrossRefGoogle Scholar
  38. 38.
    Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589CrossRefGoogle Scholar
  39. 39.
    Syamchand SS, Priya S, Sony G (2015) Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging. Microchim Acta 182(5–6):1213–1221CrossRefGoogle Scholar
  40. 40.
    Lu Y, Zhang L, Li J, Su YD, Liu Y, Xu YJ, Dong L, Gao HL, Lin J, Man N (2013) MnO nanocrystals: a platform for integration of MRI and genuine autophagy induction for chemotherapy. Adv Funct Mater 23(12):1534–1546CrossRefGoogle Scholar
  41. 41.
    Cheng Z, Al Zaki A, Jones IW, Hall HK, Aspinwall CA, Tsourkas A (2014) Stabilized porous liposomes with encapsulated Gd-labeled dextran as a highly efficient MRI contrast agent. Chem Commun 50(19):2502–2504CrossRefGoogle Scholar
  42. 42.
    Chen N, Shao C, Qu Y, Li S, Gu W, Zheng T, Ye L, Yu C (2014) Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl Mater Interfaces 6(22):19850–19857CrossRefGoogle Scholar
  43. 43.
    Lai M-H, Lee S, Smith CE, Kim K, Kong H (2014) Tailoring polymersome bilayer permeability improves enhanced permeability and retention effect for bioimaging. ACS Appl Mater Interfaces 6(13):10821–10829CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesCapital Medical UniversityBeijingPeople’s Republic of China
  2. 2.Department of Neurosurgery, Sanbo Brain HospitalCapital Medical UniversityBeijingPeople’s Republic of China
  3. 3.Department of Anatomy, School of Basic Medical SciencesCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations