Advertisement

Microchimica Acta

, 185:237 | Cite as

Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry

  • Peng Du
  • Jae Su Yu
Original Paper

Abstract

The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10−3 K−1 at 619 K and can be applied over the 291–691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry.

Graphical abstract

Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF3 nanoparticles with strongly temperature-dependent upconversion emission.

Keywords

Fluorides Ethylene glycol Thermometer NIR light Energy transfer Remote sensing FIR technique X-ray diffraction Luminescence 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2017R1A2B4011998).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2777_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1554 kb)

References

  1. 1.
    Zhong J, Chen D, Yuan Y, Chen L, Yu H, Ji Z (2017) Synthesis and spectroscopic investigation of Ba3La6(SiO4)6:Eu2+ green phosphors for white light-emitting diodes. Chem Eng J 309:795–801CrossRefGoogle Scholar
  2. 2.
    Chen J, Zhang N, Guo C, Pan F, Zhou X, Suo H, Zhao X, Goldys EM (2016) Site-dependent luminescence and thermal stability of Eu2+ doped Fluorophosphate toward white LEDs for plant growth. ACS Appl Mater Interfaces 8:20856–20864CrossRefGoogle Scholar
  3. 3.
    Wang X, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869CrossRefGoogle Scholar
  4. 4.
    Ge X, Sun L, Dang S, Liu J, Xu Y, Wei Z, Shi L, Zhang H (2015) Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature. Microchim Acta 182:1653–1660CrossRefGoogle Scholar
  5. 5.
    Du P, Luo L, Yu JS (2017) Upconversion emission and cathodoluminescence of Er3+-doped NaYbF4 nanoparticles for low-temperature thermometry and field emission displays. Appl Phys A Mater Sci Process 123:157CrossRefGoogle Scholar
  6. 6.
    Liu W, Hao Z, Zhang L, Wu H, Zhang X, Luo Y, Pan G, Zhao H, Fu Z, Zhang J (2017) Inhomogeneous-broadening-induced intense Upconversion luminescence in Tm3+ and Yb3+ Codoped Lu2O3–ZrO2 disordered crystals. Inorg Chem 56:12291–12296CrossRefGoogle Scholar
  7. 7.
    Lei P, An R, Zhai X, Yao S, Dong L, Xu X, Du K, Zhang M, Feng J, Zhang H (2017) Benefits of surfactant effects on quantum efficiency enhancement and temperature sensing behavior of NaBiF4 upconversion nanoparticles. J Mater Chem C 5:9659–9665CrossRefGoogle Scholar
  8. 8.
    Suo H, Zhao X, Zhang Z, Guo C (2017) 808 nm light-triggered thermometer–heater Upconverting platform based on Nd3+-sensitized yolk–shell GdOF@SiO2. ACS Appl Mater Interfaces 9:43438–43448CrossRefGoogle Scholar
  9. 9.
    Tang Y, Li M, Gao X, Liu X, Gao J, Ma T, Li J (2017) A NIR-responsive up-conversion nanoparticle probe of the NaYF4:Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin. Microchim Acta 184:3469–3475CrossRefGoogle Scholar
  10. 10.
    Du P, Huang X, Yu JS (2017) Yb3+-concentration dependent upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted sol-gel method. Inorg Chem Front 4:1987–1995CrossRefGoogle Scholar
  11. 11.
    Marciniak L, Prorok K, Francés-Sorianco L, Pérez-Prieto J, Bednarkiewicz A (2016) A broadening temperature sensitivity range with a core–shell YbEr@YbNd double ratiometric optical nanothermometer. Nanoscale 8:5037–5042CrossRefGoogle Scholar
  12. 12.
    Zuo Q, Luo L, Yao Y (2015) The electrical, upconversion emission, and temperature sensing properties of Er3+/Yb3+-codoped Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. J Alloys Compd 632:711–716CrossRefGoogle Scholar
  13. 13.
    Liu M, Gu M, Tian Y, Huang P, Wang L, Shi Q, Cui C (2017) Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties. J Mater Chem C 7:4025–4033CrossRefGoogle Scholar
  14. 14.
    Du P, Luo L, Yu JS (2016) Facile synthesis of Er3+/Yb3+-codoped NaYF4 nanoparticles: a promising multifunctional upconverting luminescent material for versatile applications. RSC Adv 6:94539–94546CrossRefGoogle Scholar
  15. 15.
    Suo H, Zhao X, Zhang Z, Li T, Goldys EM, Guo C (2017) Constructing multiform morphologies of YF:Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry. Chem Eng J 313:65–73CrossRefGoogle Scholar
  16. 16.
    Huang X (2016) Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles. J Mater Sci 51:3490–3499CrossRefGoogle Scholar
  17. 17.
    Huang X, Jiang L, Xu Q, Li X (2017) He a low-temperature molten-salt synthesis and upconversion of novel hexagonal NaBiF4:Er3+/Yb3+ micro−/nanocrystals. RSC Adv 7:41190–41203CrossRefGoogle Scholar
  18. 18.
    Mohan R (2010) Green bismuth. Nat Chem 2:336CrossRefGoogle Scholar
  19. 19.
    Sarkar S, Dash A, Mahalingam V (2014) Strong stokes and upconversion luminescence from ultrasmall Ln3+-Doped BiF3 (Ln = Eu3+, Yb3+/Er3+) nanoparticles confined in a polymer matrix. Chem Asian J 9:447–451CrossRefGoogle Scholar
  20. 20.
    Du P, Zhang P, Kang SH, Yu JS (2017) Hydrothermal synthesis and application of Ho3+-activated NaYbF4 bifunctional upconverting nanoparticles for in vitro cell imaging and latent fingerprint detection. Sensors Actuators B 252:584–591CrossRefGoogle Scholar
  21. 21.
    Escudero A, Morettib E, Ocaña M (2014) Synthesis and luminescence of uniform europium doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. CrystEngComm 16:3274–3283CrossRefGoogle Scholar
  22. 22.
    Tian Y, Tian B, Cui C, Huang P, Wang L, Chen B (2015) Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor. RSC Adv 5:14123–14128CrossRefGoogle Scholar
  23. 23.
    Zou H, Wang X, Hu Y, Zhu X, Sui Y, Song Z (2016) Optical temperature sensor through upconversion emission from the Er3+ doped SrBi8Ti7O27 ferroelectrics. J Electron Mater 45:2745–2749CrossRefGoogle Scholar
  24. 24.
    Tian Y, Tian Y, Huang P, Wang L, Shi Q, Cui C (2016) Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem Eng J 297:26–34CrossRefGoogle Scholar
  25. 25.
    Lu HY, Hao HY, Gao YC, Li DY, Shi G, Song YL, Wang YX, Zhang XR (2017) Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2(WO4)3 phosphor co-doped with in Ho(III), Tm(III), and Yb(III). Microchim Acta 184:641–646CrossRefGoogle Scholar
  26. 26.
    Du P, Luo L, Yu JS (2017) Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating. Microchim Acta 184:2661–2669CrossRefGoogle Scholar
  27. 27.
    Marciniak L, Prorok K, Bednarkiewicz A (2017) Size dependent sensitivity of Yb3+,Er3+ up-converting luminescent nano-thermometers. J Mater Chem C 5:7890–7897CrossRefGoogle Scholar
  28. 28.
    Li X, Cao J, Hu F, Wei R, Guo H (2017) Transparent Na5Gd9F32:Er3+ glass-ceramics: enhanced up-conversion luminescence and applications in optical temperature sensors. RSC Adv 7:35147–35153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic EngineeringKyung Hee UniversityYongin-siRepublic of Korea

Personalised recommendations