Skip to main content

Advertisement

Log in

MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-channel ratiometric nanoprobe is described for detection and imaging of microRNA. It was prepared from MoS2 quantum dots (QDs; with blue emission and excitation/emission peaks at 310/398 nm) which acts as both the gene carrier and as a donor in fluorescence resonance energy transfer (FRET). Molecular beacons containing loops for molecular recognition of microRNA and labeled with carboxyfluorescein (FAM) were covalently attached to the MoS2 QDs and serve as the FRET acceptor. In the absence of microRNA, the nanoprobe exhibits low FRET efficiency due to the close distance between the FAM tag and the QDs. Hybridization with microRNA enlarges the distance between QD and beacon. This results in an enhancement of the FRET efficiency of the nanoprobe. The ratio of green and blue fluorescence (I520/I398) increases linearly in the 5 to 150 nM microRNA concentration range in both aqueous solution and diluted artificial cerebrospinal fluid. The limit of detection (LOD) is as low as 0.38 nM and 0.52 nM, respectively. Other features of this nanoprobe include (a) excellent resistance to nuclease-induced false positive signals and (b) the option to use it for distinguishing different cell lines by in-situ imaging of intracellular microRNAs.

Schematic of a dual-channel photoluminescence nanoprobe for the determination of microRNA-21 (miR-21) by monitoring the microRNA-triggered enhancement of the fluorescence resonance energy transfer (FRET) efficiency between MoS2 QDs and carboxyfluorescein-labeled molecular beacons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee J-S, Kim S, Na H-K, Min D-H (2016) MicroRNA-responsive drug release system for selective fluorescence imaging and photodynamic therapy in vivo. Adv Healthc Mater 5(18):2386–2395

    Article  CAS  Google Scholar 

  2. Qian R-C, Cao Y, Long Y-T (2016) Binary system for MicroRNA-targeted imaging in single cells and Photothermal Cancer therapy. Anal Chem 88(17):8640–8647

    Article  CAS  Google Scholar 

  3. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333

    Article  CAS  Google Scholar 

  4. Hébert SS, De SB (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206

    Article  Google Scholar 

  5. Musilova K, Mraz M (2015) MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 29(5):1004–1017

    Article  CAS  Google Scholar 

  6. Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C (2012) Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58(3):610–618

    Article  CAS  Google Scholar 

  7. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  Google Scholar 

  8. Joshi GK, Deitzmcelyea S, Liyanage T, Lawrence K, Mali S, Sardar R, Korc M (2015) Label-free Nanoplasmonic-based short noncoding RNA sensing at Attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes. ACS Nano 9(11):11075–11089

    Article  CAS  Google Scholar 

  9. Yuan Y-H, Wu Y-D, Chi B-Z, Wen S-H, Lian R-P, Qiu J-D (2017) Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens Bioelectron 97:325–331

    Article  CAS  Google Scholar 

  10. Guo Q, Bian F, Liu Y, Qu X, Hu X, Sun Q (2017) Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun 53(36):4954–4957

    Article  CAS  Google Scholar 

  11. Kim S, Park JE, Hwang W, Seo J, Lee YK, Hwang JH, Nam JM (2017) Optokinetically encoded Nanoprobe-based multiplexing strategy for MicroRNA profiling. J Am Chem Soc 139(9):3558–3566

    Article  CAS  Google Scholar 

  12. Yin BC, Liu YQ, Ye BC (2012) One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc 134(11):5064–5067

    Article  CAS  Google Scholar 

  13. Borghei YS, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Microchim Acta 184(12):1–9

    Article  Google Scholar 

  14. Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183(1):297–304

    Article  CAS  Google Scholar 

  15. Yang JR, Tang M, Diao W, Cheng WB, Zhang Y, Yan YR (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183(11):3061–3067

    Article  CAS  Google Scholar 

  16. Zeng K, Li HY, Peng YY (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184(8):2637–2644

    Article  CAS  Google Scholar 

  17. Lee J, Jin YA, Ko HY, Lee YS, Heo H, Cho S, Kim S (2015) Magnetic resonance beacon to detect intracellular microRNA during neurogenesis. Biomaterials 41:69–78

    Article  CAS  Google Scholar 

  18. Zhao X, Xu L, Sun M, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Gold-quantum dot Core–satellite assemblies for lighting up MicroRNA in vitro and in vivo. Small 12(34):4662–4668

    Article  CAS  Google Scholar 

  19. Ye S, Li X, Wang M, Tang B (2017) Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal Chem 89(9):5124–5130

    Article  CAS  Google Scholar 

  20. Huang L, Chen Y, Chen L, Xiao X, Wang X, Li J, Zhang Y (2017) Photo-clickable microRNA for in situ fluorescence labeling and imaging of microRNA in living cells. Chem Commun 53(48):6452–6455

    Article  CAS  Google Scholar 

  21. Ha HD, Han DJ, Choi JS, Park M, Seo TS (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10(19):3858–3862

    Article  CAS  Google Scholar 

  22. Shi HY, Yang L, Zhou XY, Bai J, Gao J, Jia HX, Li QG (2017) A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Microchim Acta 184(2):525–531

    Article  CAS  Google Scholar 

  23. Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X (2015) Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of MicroRNAs. ACS Appl Mater Interfaces 7(30):16152–16156

    Article  CAS  Google Scholar 

  24. Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184(11):4323–4330

    Article  CAS  Google Scholar 

  25. He L, Lu DQ, Liang H, Xie S, Luo C, Hu M, Xu L, Zhang X, Tan W (2017) Fluorescence resonance energy transfer-based DNA tetrahedron Nano-tweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano 11(4):4060–4066

    Article  CAS  Google Scholar 

  26. Fu Y, Chen T, Wang G, Gu T, Xie C, Huang J, Li X, Best S, Han G (2017) Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B 5(34):7133–7139

    Article  CAS  Google Scholar 

  27. Chen YX, Huang KJ, Niu KX (2018) Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 99:612–624

    Article  CAS  Google Scholar 

  28. Liu LZ, Jiang ST, Wang L, Zhang Z, Xie GM (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182(1–2):77–84

    Article  CAS  Google Scholar 

  29. Zhou LL, Wang J, Chen ZP, Li JL, Wang T, Zhang Z, Xie GM (2017) A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Microchim Acta 184(5):1305–1313

    Article  CAS  Google Scholar 

  30. Yi JT, Chen TT, Huo J, Chu X (2017) Nanoscale Zeolitic Imidazolate Framework-8 for Ratiometric fluorescence imaging of MicroRNA in living cells. Anal Chem 89(22):12351–12359

    Article  CAS  Google Scholar 

  31. Li S, Xu L, Sun M, Wu X, Liu L, Kuang H, Xu C (2017) Hybrid nanoparticle pyramids for intracellular dual MicroRNAs Biosensing and Bioimaging. Adv Mater 29(19):1606086

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21705012, 21675016) and the Fundamental Research Funds for the Central Universities (106112017CDJXFLX0014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Wang or Weili Wei.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Hu, L., Zhang, F. et al. MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta 185, 239 (2018). https://doi.org/10.1007/s00604-018-2773-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2773-y

Keywords

Navigation