Microchimica Acta

, 185:250 | Cite as

Nonenzymatic determination of glucose at near neutral pH values based on the use of nafion and platinum black coated microneedle electrode array

  • Somasekhar R. Chinnadayyala
  • Ilhwan Park
  • Sungbo Cho
Original Paper


The authors report on a microneedle-based amperometric nonenzymatic glucose sensor for painless and continuous monitoring of glucose. It consists of 3 × 5 sharp stainless steel microneedles micromachined from a stainless steel substrate. The microneedles are 600 and 100 μm in height and width, respectively. Nafion and platinum black were sequentially coated onto the tip of gold-coated microneedles and used for nonenzymatic (direct) sensing of glucose. Attractive features of the modified microneedle electrode include (a) a low working potential (+0.12 V vs. Ag/AgCl), (b) a linear response in the physiologically relevant range (1–40 mM), (c) a sensitivity as high as 175 μA mM−1 cm−2, (d) a 23 μM detection limit, and (e) a response time of 2 s. The sensor also exhibits good reproducibility and stability. The sensor is selective for glucose even in the presence of 10-fold higher concentrations of ascorbic acid, lactic acid, dopamine, uric acid, and acetaminophen.

Graphical abstract

Schematic representation of the fabrication sequence for a nonenzymatic electrochemical glucose sensor using Nafion and platinum black coated microneedle electrode array. The sensor is based on measuring the faradaic current at +0.12 V vs. Ag/AgCl by the direct electrochemical oxidation of glucose to gluconic acid on the surface of a Pt black sensing layer.


Chloroplatinic acid hexahydrate Lead acetate Parylene Polydimethylsiloxane Electrochemical sensor Scanning electron microscope Chronoamperometry Cyclic voltammetry Electrodeposition 



The work was supported by the National Research Foundation of Korea (No. NRF-2017R1D1A1A09000712, 2018R1C1B6009385, 2018M3A9F1023690).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2770_MOESM1_ESM.docx (728 kb)
ESM 1 (DOCX 727 kb)


  1. 1.
    Mo R, Jiang T, Di J, Tai W, Gu Z (2014) Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 43(10):3595–3629CrossRefPubMedGoogle Scholar
  2. 2.
    Yoon Y, Lee GS, Yoo K, Lee J-B (2013) Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensors and its in-vitro glucose sensing characterization. Sensors 13(12):16672–16681CrossRefPubMedGoogle Scholar
  3. 3.
    Bennion N, Christensen NK, McGarraugh G (2004) Alternate site glucose testing: a crossover design. Diabetes Technol Ther 4(1):25–33CrossRefGoogle Scholar
  4. 4.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839CrossRefPubMedGoogle Scholar
  5. 5.
    Kakehi N, Yamazaki T, Tsugawa W (2007) A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron 22(9–10):2250–2255CrossRefPubMedGoogle Scholar
  6. 6.
    Zimmermann S, Fienbork D, Stoeboer B, Flounders A, Liepmann D (2003) A microneedle-based glucose monitor: fabricated on a wafer-level using in-device enzyme immobilization Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference. 99–102.
  7. 7.
    Kim K, Lee J-B (2007) High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol 13(3–4):231–235Google Scholar
  8. 8.
    Kim YC, Park JH, Prausnitz MR (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64(14):1547–1568CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Swain S, Beg S, Singh A, Patro CN, Rao MEB (2011) Advanced techniques for penetration enhancement in transdermal drug delivery system. Curr Drug Deliv 8(4):456–473CrossRefPubMedGoogle Scholar
  10. 10.
    Donnelly RF, Singh TRR, Woolfson AD (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17(4):187–207CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bariya SH, Gohel MC, Mehta TA, Sharma OP (2012) Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 64(1):11–29CrossRefPubMedGoogle Scholar
  12. 12.
    McAllister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci U S A 100(24):13755–13760CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harper JC, Brozik SM, Flemming JH, McClain JL, Polsky R, Raj D, Eyck GAT, Wheeler DR, Achyuthan KE (2009) Fabrication and testing of a microneedles sensor array for p-cresol detection with potential biofuel applications. ACS Appl Mater Interfaces 1(7):1591–1598CrossRefPubMedGoogle Scholar
  14. 14.
    Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87(8):922–925CrossRefPubMedGoogle Scholar
  15. 15.
    Windmiller JR, Zhou N, Chuang MC, Valdes-Ramirez G, Santhosh P, Miller PR, Narayan R, Wang J (2011) Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136(9):1846–1851CrossRefPubMedGoogle Scholar
  16. 16.
    Choi SO, Kim YC, Park JH, Hutcheson J, Gill HS, Yoon YK, Prausnitz MR, Allen MG (2010) An electrically active microneedle array for electroporation. Biomed Microdevices 12(2):263–273CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Invernale MA, Tang BC, York RL, Le L, Hou DY, Anderson DG (2014) Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv Healthc Mater 3(3):338–342CrossRefPubMedGoogle Scholar
  18. 18.
    Iguchi S, Kudo H, Saito T, Ogawa M, Saito H, Otsuka K, Funakubo A, Mitsubayashi KA (2007) Flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices 9(4):603–609CrossRefPubMedGoogle Scholar
  19. 19.
    Paranjape M, Garra J, Brida S, Schneider T, White R, Currie J (2003) A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sensors Actuators A Phys 104(3):195–204CrossRefGoogle Scholar
  20. 20.
    Mukerjee EV, Collins SD, Isseroff RR, Smith RL (2004) Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors Actuators A Phys 114(2–3):267–275CrossRefGoogle Scholar
  21. 21.
    Jina A, Tierney MJ, Tamada JA, McGill S, Desai S, Chua B, Chang A, Christiansen M (2014) Design, development, and evaluation of a novel microneedle Array-based continuous glucose monitor. J Diabetes Sci Technol 8(3):483–487CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180(3–4):161–186CrossRefGoogle Scholar
  23. 23.
    Kung CW, Cheng YH, Ho KC (2014) Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sensors Actuators B Chem 204:159–166CrossRefGoogle Scholar
  24. 24.
    Shervedani RK, Karevan M, Amini A (2014) Prickly nickel nanowires grown on Cu substrate as a supersensitive enzyme-free electrochemical glucose sensor. Sensors Actuators B Chem 204:783–790CrossRefGoogle Scholar
  25. 25.
    Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301Google Scholar
  26. 26.
    Pletcher D (1984) Electrocatalysis: present and future. J Appl Electrochem 14(4):403–415CrossRefGoogle Scholar
  27. 27.
    Abdel-Humid I, Atanusov P, WiEkins E (1995) Needle-type glucose biosensor with an electrochemically codeposited enzyme in a platinum black matrix. Electroanalysis 7(8):738–741CrossRefGoogle Scholar
  28. 28.
    Shi J, Zhang H, Snyder A, Wang MX, Xie J, Marshall Porterfield D, Stanciu LA (2012) An aqueous media based approach for the preparation of a biosensor platform composed of graphene oxide and Pt-black. Biosens Bioelectron 38(1):314–320CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Park S, Park S, Jeong RA, Boo H, Park J, Kim HC, Chung TD (2012) Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosens Bioelectron 31(1):284–291CrossRefPubMedGoogle Scholar
  30. 30.
    Kim J, Kim D, Choi SY, Kim S-D, Song JY, Kim J (2016) Electrochemical deposition of flat Nanoporous Pt layers with small pore dimensions. Electrochim Acta 189:196–204CrossRefGoogle Scholar
  31. 31.
    Thiruppathi M, Thiyagarajan N, Gopinathan M, Chang JL, Zen JM (2017) A dually functional 4-aminophenylboronic acid dimer for voltammetric detection of hypochlorite, glucose and fructose. Microchim Acta 184:4073–4080CrossRefGoogle Scholar
  32. 32.
    Nikolaeva KG, Ermakova SS, Offenhäusserb A, Mourzina Y (2017) Nonenzymatic determination of glucose on electrodes prepared by directed electrochemical nanowire assembly (DENA). J Anal Chem 72:371–374CrossRefGoogle Scholar
  33. 33.
    Ye C, Zhong X, Chai Y, Yuan R (2015) Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite. Microchim Acta 182:2215–2221CrossRefGoogle Scholar
  34. 34.
    Barman K, Jasimuddin S (2016) Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(IV) complex modified gold electrode. RSC Adv 6:20800–20806CrossRefGoogle Scholar
  35. 35.
    Mei H, Wu W, Yu B, Li Y, Wu H, Wang S, Xia Q (2015) Non-enzymatic sensing of glucose at neutral pH values using a glassy carbon electrode modified with carbon supported Co@Pt core-shell nanoparticles. Microchim Acta 182:1869–1875CrossRefGoogle Scholar
  36. 36.
    Roh S, Kim J (2015) Electrodeposition of three-dimensionally assembled platinum spheres on a gold-coated silicon wafer, and its application to nonenzymatic sensing of glucose. Microchim Acta 182:849–854CrossRefGoogle Scholar
  37. 37.
    Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060CrossRefGoogle Scholar
  38. 38.
    Long YT, Kong C, Li DW, Li Y, Chowdhury S, Tian H (2011) Ultrasensitive determination of cysteine based on the photocurrent of Nafion-functionalized CdS–MV quantum dots on an ITO electrode. Small 7:1624–1628CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Somasekhar R. Chinnadayyala
    • 1
  • Ilhwan Park
    • 2
  • Sungbo Cho
    • 2
    • 3
  1. 1.Department of Biomedical EngineeringGachon UniversityIncheonRepublic of Korea
  2. 2.Gachon Advanced Institute for Health Science & TechnologyGachon UniversityIncheonRepublic of Korea
  3. 3.Department of Electronic EngineeringGachon UniversitySeongnam-siRepublic of Korea

Personalised recommendations