Microchimica Acta

, 185:233 | Cite as

Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite

  • Yi Wang
  • Pu Zhang
  • Qing Lu
  • Yue Wang
  • Wensheng Fu
  • Qin Tan
  • Weiping Luo
Original Paper
  • 135 Downloads

Abstract

A method is described for the fluorometric determination of hypochlorite. It is making use of molybdenum disulfide quantum dots (MoS2 QDs) as a fluorescent probe. The QDs are prepared by hydrothermal reaction of sodium molybdate with glutathione. They possess diameters typically ranging from 1.4 to 3.8 nm, excellent stability in water, and blue photoluminescence (with excitation/emission peaks located at 315/412 nm and a quantum yield of 3.7%). The fluorescence of the QDs is statically quenched by hypochlorite, and the Stern-Volmer plot is linear. Hypochlorite can be detected in the 5–500 μM concentration range with a 0.5 μM detection limit. The method has been successfully applied to the determination of hypochlorite in spiked samples of tap water, lake water, and commercial disinfectants.

Graphical abstract

Schematic of a method for the fluorometric determination of hypochlorite using MoS2 quantum dots as a fluorescent probe. It has been applied to hypochlorite assay in spiked samples of tap water, lake water, and commercial disinfectants.

Keywords

Photoluminescence Nanoparticles Molybdenum disulfide Hypochlorous acid Anion detection Disinfectant 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21775014, 21505012, and 81501837), Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2017jcyjAX0368), Program for Top-Notch Young Innovative Talents of Chongqing Normal University (No. 02030307-00026), and Chongqing Research Program on Teaching Reform of Higher Education (No. 153062). Y.W. (Yue Wang), Q.T. and W.L. are also supported by Chongqing Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710637007).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2768_MOESM1_ESM.doc (10 mb)
ESM 1 (DOC 10244 kb)

References

  1. 1.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  2. 2.
    Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRefGoogle Scholar
  3. 3.
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275CrossRefGoogle Scholar
  4. 4.
    Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136CrossRefGoogle Scholar
  5. 5.
    Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C (2015) Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem 39:8492–8497CrossRefGoogle Scholar
  6. 6.
    Liu Q, Hu C, Wang X (2016) A facile one-step method to produce MoS2 quantum dots as promising bio-imaging materials. RSC Adv 6:25605–25610CrossRefGoogle Scholar
  7. 7.
    Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu S (2015) One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 3:10693–10697CrossRefGoogle Scholar
  8. 8.
    Wang Y, Ni Y (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 86:7463–7470CrossRefGoogle Scholar
  9. 9.
    Haldar D, Dinda D, Saha SK (2016) High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives. J Mater Chem C 4:6321–6326CrossRefGoogle Scholar
  10. 10.
    Wang Z, Lin J, Gao J, Wang Q (2016) Two optically active molybdenum disulfide quantum dots as tetracycline sensors. Mater Chem Phys 178:82–87CrossRefGoogle Scholar
  11. 11.
    Gu W, Yan Y, Zhang C, Ding C, Xian Y (2016) One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces 8:11272–11279CrossRefGoogle Scholar
  12. 12.
    Yu J, Ma X, Yin W, Gu Z (2016) Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv 6:81174–81183CrossRefGoogle Scholar
  13. 13.
    Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G, Cao Y, Lu H, Zhang X, Ju H (2016) Fluorescent MoS2 quantum dots: Ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 8:3107–3114CrossRefGoogle Scholar
  14. 14.
    Lin W, Long L, Chen B, Tan W (2009) A ratiometric fluorescent probe for hypochlorite based on a deoximation reaction. Chem Eur J 15:2305–2309CrossRefGoogle Scholar
  15. 15.
    Yue Y, Huo F, Yin C, Escobedoc JO, Strongin RM (2016) Recent progress in chromogenic and fluorogenic chemosensors for hypochlorous acid. Analyst 141:1859–1873CrossRefGoogle Scholar
  16. 16.
    Sugiyama S, Kugiyama K, Aikawa M, Nakamura S, Ogawa H, Libby P (2004) Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler Thromb Vasc Biol 24:1309–1314CrossRefGoogle Scholar
  17. 17.
    Steinbeck MJ, Nesti LJ, Sharkey PF, Parvizi J (2007) Myeloperoxidase and chlorinated peptides in osteoarthritis: potential biomarkers of the disease. J Orthop Res 25:1128–1135CrossRefGoogle Scholar
  18. 18.
    Benhar M, Engelberg D, Levitzki A (2002) ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep 3:420–425CrossRefGoogle Scholar
  19. 19.
    Yuan L, Lin W, Song J, Yang Y (2011) Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem Commun 47:12691–12693CrossRefGoogle Scholar
  20. 20.
    Chen S, Lu J, Sun C, Ma H (2010) A highly specific ferrocene-based fluorescent probe for hypochlorous acid and its application to cell imaging. Analyst 135:577–582CrossRefGoogle Scholar
  21. 21.
    Liu L, Zhang J, Su X, Mason RP (2008) In vitro and in vivo assessment of CdTe and CdHgTe toxicity and clearance. J Biomed Nanotechnol 4:524–528CrossRefGoogle Scholar
  22. 22.
    Cayuela A, Soriano ML, Valcárcel M (2013) Strong luminescence of carbon dots induced by acetone passivation: Efficient sensor for a rapid analysis of two different pollutants. Anal Chim Acta 804:246–251CrossRefGoogle Scholar
  23. 23.
    Wang Y, Zhang P, Ye C, Fu W, Yuan H, Hu P, Liu Y (2018) Hexamethylenetetramine: an effective and universal nitrogen-doping reagent to enhance the photoluminescence of carbon nanodots. New J Chem 42:3519–3525CrossRefGoogle Scholar
  24. 24.
    Park S, Choi S, Yu J (2014) DNA-encapsulated silver nanodots as ratiometric luminescent probes for hypochlorite detection. Nanoscale Res Lett 9:129CrossRefGoogle Scholar
  25. 25.
    Zhang P, Wang Y, Chen L, Yin Y (2017) Bimetallic nanoclusters with strong red fluorescence for sensitive detection of hypochlorite in tap water. Microchim Acta 184:3781–3787CrossRefGoogle Scholar
  26. 26.
    Xia X, Zhang Y, Wang J (2014) Novel fabrication of highly fluorescent Pt nanoclusters and their applications in hypochlorite assay. RSC Adv 4:25365–25368CrossRefGoogle Scholar
  27. 27.
    Tang Q, Yang T, Huang Y (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182:2337–2343CrossRefGoogle Scholar
  28. 28.
    Gu W, Yan Y, Cao X, Zhang C, Ding C, Xian Y (2016) A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging. J Mater Chem B 4:27–31CrossRefGoogle Scholar
  29. 29.
    Galea NM, Kadantsev ES, Ziegler T (2009) Modeling hydrogen sulfide adsorption on Mo-edge MoS2 surfaces under solid oxide fuel cell conditions. J Phys Chem C 113:193–203CrossRefGoogle Scholar
  30. 30.
    Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33:692–705CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Green Synthesis and Applications, College of ChemistryChongqing Normal UniversityChongqingChina
  2. 2.College of PharmacyChongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations