Advertisement

Microchimica Acta

, 185:220 | Cite as

Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid)

  • Satu Lahtinen
  • Annika Lyytikäinen
  • Nina Sirkka
  • Henna Päkkilä
  • Tero Soukka
Original Paper

Abstract

Upconverting nanoparticles (UCNPs) are attractive reporters in immunoassays because of their outstanding detectability. However, non-specific binding of antibody-UCNP conjugates on protein coated solid support results in background, which limits the immunoassay sensitivity. Thus, the full potential of UCNPs as reporters cannot be fully exploited. The authors report here a method to improve the sensitivity of UCNP-based immunoassays by reducing the non-specific binding of antibody-UNCP conjugates on the protein coated solid support. In the assays studied here, poly(acrylic acid) (PAA) coated NaYF4:Yb3+,Er3+ type UCNPs were conjugated to two different antibodies against cardiac troponin I (cTnI) and thyroid stimulating hormone (TSH). The two-step heterogeneous sandwich immunoassays were performed in microtitration wells, and the green luminescence of antibody-UCNP conjugates was measured at 540 nm upon 980 nm excitation. Non-specific binding of antibody-UCNP conjugates was reduced by mixing free PAA with PAA coated UCNPs before adding the UCNPs to the wells. The free PAA in the buffer reduced the background in both cTnI and TSH immunoassays (compared to the control assay without free PAA). The limits of detection decreased from 2.1 ng·L−1 to 0.48 ng·L−1 in case of cTnI and from 0.070 mIU·L−1 to 0.020 mIU·L−1 in case of TSH if PAA is added to the buffer. Presumably, the effect of free PAA is due to blocking of the surface areas where PAA coated UCNP would bind proteins non-specifically. The method introduced here is likely to be applicable to other kinds of PAA-coated nanoparticles, and similar approaches conceivably work also with other nanoparticle coatings.

Graphical abstract

The presence of free poly(acrylic acid) (PAA) in a buffer solution prevents aggregation and non-specific protein binding of PAA-coated upconverting nanoparticles (UCNPs) in heterogeneous sandwich immunoassays. The decrease in non-specific binding enables distinctly more sensitive assays to be performed.

Keywords

Cardiac troponin I Thyroid stimulating hormone Sandwich immunoassay Upconversion luminescence Reporter Antibody conjugate Assay background Colloidal stability Nanoparticles 

Notes

Acknowledgments

This study was supported by Tekes, the Finnish Funding Agency for Innovation and the Doctoral Programme of Molecular Life Sciences. The authors wish to thank Jessica Rosenholm from Åbo Akademi for assisting with the DLS measurements and Raili Kronström for the technical assistance.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2756_MOESM1_ESM.pdf (381 kb)
ESM 1 (PDF 381 kb)

References

  1. 1.
    Quinton J, Kolodych S, Chaumonet M, Bevilacqua V, Nevers MC, Volland H, Gabillet S, Thuéry P, Créminon C, Taran F (2012) Reaction discovery by using a sandwich immunoassay. Angew Chem Int Ed 124:6248–6252CrossRefGoogle Scholar
  2. 2.
    Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18CrossRefGoogle Scholar
  3. 3.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042CrossRefGoogle Scholar
  4. 4.
    Amaro M, Oaew S, Surareungchai W (2012) Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosens Bioelectron 38:157–162CrossRefGoogle Scholar
  5. 5.
    Soukka T, Paukkunen J, Härmä H, Lönnberg S, Lindroos H, Lövgren T (2001) Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clin Chem 47:1269–1278Google Scholar
  6. 6.
    Gorris HH, Resch-Genger U (2017) Perspectives and challenges of photon-upconversion nanoparticles-part II: bioanalytical applications. Anal Bioanal Chem 409:5875–5890CrossRefGoogle Scholar
  7. 7.
    Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829CrossRefGoogle Scholar
  8. 8.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174CrossRefGoogle Scholar
  9. 9.
    Wilhelm S, Kaiser M, Würth C, Heiland J, Carrillo-Carrion C, Muhr V, Wolfbeis OS, Parak WJ, Resch-Genger U, Hirsch T (2015) Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nano 7:1403–1410Google Scholar
  10. 10.
    Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE (2017) Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium (III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 409:3407–3416CrossRefGoogle Scholar
  11. 11.
    Jeyachandran Y, Mielczarski J, Mielczarski E, Rai B (2010) Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. J Colloid Interface Sci 341:136–142CrossRefGoogle Scholar
  12. 12.
    Trevino J, Calle A, Rodríguez-Frade J, Mellado M, Lechuga L (2009) Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta 78:1011–1016CrossRefGoogle Scholar
  13. 13.
    Bentzen EL, Tomlinson ID, Mason J, Gresch P, Warnement MR, Wright D, Sanders-Bush E, Blakely R, Rosenthal SJ (2005) Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug Chem 16:1488–1494CrossRefGoogle Scholar
  14. 14.
    Sirkka N, Lyytikäinen A, Savukoski T, Soukka T (2016) Upconverting nanophosphors as reporters in a highly sensitive heterogeneous immunoassay for cardiac troponin I. Anal Chim Acta 925:82–87CrossRefGoogle Scholar
  15. 15.
    Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44:1526–1560CrossRefGoogle Scholar
  16. 16.
    Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085CrossRefGoogle Scholar
  17. 17.
    Wang L, Zhang Y, Zhu Y (2010) One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF3: Yb3+/Er3+ nanocrystals. Nano Res 3:317–325CrossRefGoogle Scholar
  18. 18.
    Budijono SJ, Shan J, Yao N, Miura Y, Hoye T, Austin RH, Ju Y, Prud’homme RK (2010) Synthesis of stable block-copolymer-protected NaYF4: Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22:311–318CrossRefGoogle Scholar
  19. 19.
    Välimaa L, Pettersson K, Vehniäinen M, Karp M, Lövgren T (2003) A high-capacity streptavidin-coated microtitration plate. Bioconjug Chem 14:103–111CrossRefGoogle Scholar
  20. 20.
    Ylikotila J, Hellström JL, Eriksson S, Vehniäinen M, Välimaa L, Takalo H, Bereznikova A, Pettersson K (2006) Utilization of recombinant fab fragments in a cTnI immunoassay conducted in spot wells. Clin Biochem 39:843–850CrossRefGoogle Scholar
  21. 21.
    Eriksson S, Junikka M, Laitinen P, Majamaa-Voltti K, Alfthan H, Pettersson K (2003) Negative interference in cardiac troponin I immunoassays from a frequently occurring serum and plasma component. Clin Chem 49:1095–1104CrossRefGoogle Scholar
  22. 22.
    Palo E, Tuomisto M, Hyppänen I, Swart HC, Hölsä J, Soukka T, Lastusaari M (2017) Highly uniform up-converting nanoparticles: why you should control your synthesis even more. J Lumin 185:125–131CrossRefGoogle Scholar
  23. 23.
    Kuningas K, Rantanen T, Ukonaho T, Lövgren T, Soukka T (2005) Homogeneous assay technology based on upconverting phosphors. Anal Chem 77:7348–7355CrossRefGoogle Scholar
  24. 24.
    Hyytiä H, Heikkilä T, Hedberg P, Puolakanaho T, Pettersson K (2015) Skeletal troponin I cross-reactivity in different cardiac troponin I assay versions. Clin Biochem 48:313–317CrossRefGoogle Scholar
  25. 25.
    Soukka T, Kuningas K, Rantanen T, Haaslahti V, Lövgren T (2005) Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels. J Fluoresc 15:513–528CrossRefGoogle Scholar
  26. 26.
    Liufu S, Xiao H, Li Y (2005) Adsorption of poly (acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J Colloid Interface Sci 281:155–163CrossRefGoogle Scholar
  27. 27.
    Lin CL, Lee CF, Chiu WY (2005) Preparation and properties of poly (acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291:411–420CrossRefGoogle Scholar
  28. 28.
    Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723CrossRefGoogle Scholar
  29. 29.
    Ipe BI, Shukla A, Lu H, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chem PhysChem 7:1112–1118Google Scholar
  30. 30.
    Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interface 222:332–349CrossRefGoogle Scholar
  31. 31.
    Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J (2017) Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem 63:73–81CrossRefGoogle Scholar
  32. 32.
    Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Design of poly (ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24:8864–8870CrossRefGoogle Scholar
  33. 33.
    Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 28:4188–4190Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of TurkuTurkuFinland

Personalised recommendations