Skip to main content
Log in

A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for the colorimetric determination of the pesticide malathion. It is based on the use of a hairpin structure consisting of a complementary strand of aptamer and a double-stranded DNA (dsDNA) structure to protect gold nanoparticles (AuNPs) against salt-induced aggregation. In the absence of malathion, the dsDNA structure is preserved on the surface of AuNPs and the color of the AuNPs in solutions containing NaCl remains red. However, in the presence of malathion, a hairpin structure of complementary strand is formed. The Aptamer/Malathion complex and the complementary strand are released from the surface of the AuNPs. As a result, the AuNPs undergo salt-induced aggregation which is accompanied by a color change to blue. The assay allows malathion to be quantified within 35 min (A650/A520 was measured). The detection limit is 1 pM, and response is linear in the 5 pM to 10 nM malathion concentration range. The method is specific and was successfully applied to the determination of malathion in spiked human serum samples.

Schematic representation of detection of malathion based on dsDNA-modified gold nanoparticles (AuNPs) and the hairpin structure of the complementary strand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huo D, Li Q, Zhang Y, Hou C, Lei Y (2014) A highly efficient organophosphorus pesticides sensor based on CuO nanowires–SWCNTs hybrid nanocomposite. Sensors Actuators B Chem 199:410–417. https://doi.org/10.1016/j.snb.2014.04.016

    Article  CAS  Google Scholar 

  2. Ohar Z, Lahav O, Ostfeld A (2015) Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Water Res 73:193–203. https://doi.org/10.1016/j.watres.2015.01.024

    Article  CAS  Google Scholar 

  3. Nanda Kumar D, Rajeshwari A, Alex SA, Sahu M, Raichur AM, Chandrasekaran N, Mukherjee A (2015) Developing acetylcholinesterase-based inhibition assay by modulated synthesis of silver nanoparticles: applications for sensing of organophosphorus pesticides. RSC Adv 5(76):61998–62006. https://doi.org/10.1039/c5ra10146h

    Article  Google Scholar 

  4. Bala R, Kumar M, Bansal K, Sharma RK, Wangoo N (2016) Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens Bioelectron 85:445–449. https://doi.org/10.1016/j.bios.2016.05.042

    Article  CAS  Google Scholar 

  5. Mehta J, Vinayak P, Tuteja SK, Chhabra VA, Bhardwaj N, Paul AK, Kim K-H, Deep A (2016) Graphene modified screen printed immunosensor for highly sensitive detection of parathion. Biosens Bioelectron 83:339–346. https://doi.org/10.1016/j.bios.2016.04.058

    Article  CAS  Google Scholar 

  6. Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS (2014) Cholinesterase sensor based on glassy carbon electrode modified with ag nanoparticles decorated with macrocyclic ligands. Talanta 127:9–17. https://doi.org/10.1016/j.talanta.2014.03.048

    Article  CAS  Google Scholar 

  7. Wang T, Reid RC, Minteer SD (2016) A paper-based mitochondrial electrochemical biosensor for pesticide detection. Electroanalysis 28(4):854–859. https://doi.org/10.1002/elan.201500487

    Article  CAS  Google Scholar 

  8. Wang Y, Gan N, Zhou Y, Li T, Hu F, Cao Y, Chen Y (2017) Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens Bioelectron 97:100–106. https://doi.org/10.1016/j.bios.2017.05.017

    Article  CAS  Google Scholar 

  9. Skouridou V, Schubert T, Bashammakh AS, El-Shahawi MS, Alyoubi AO, O'Sullivan CK (2017) Aptatope mapping of the binding site of a progesterone aptamer on the steroid ring structure. Anal Biochem 531:8–11. https://doi.org/10.1016/j.ab.2017.05.010

    Article  CAS  Google Scholar 

  10. Xiang J, Pi X, Chen X, Xiang L, Yang M, Ren H, Shen X, Qi N, Deng C (2017) Integrated signal probe based aptasensor for dual-analyte detection. Biosens Bioelectron 96:268–274. https://doi.org/10.1016/j.bios.2017.04.039

    Article  CAS  Google Scholar 

  11. Han C, Li R, Li H, Liu S, Xu C, Wang J, Wang Y, Huang J (2017) Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184:2941–2948. https://doi.org/10.1007/s00604-017-2311-3

    Article  CAS  Google Scholar 

  12. Li Y, Sun L, Zhao Q (2017) Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer. Talanta 174:7–13. https://doi.org/10.1016/j.talanta.2017.05.077

    Article  CAS  Google Scholar 

  13. Ren C, Li H, Lu X, Qian J, Zhu M, Chen W, Liu Q, Hao N, Li H, Wang K (2017) A disposable aptasensing device for label-free detection of fumonisin B1 by integrating PDMS film-based micro-cell and screen-printed carbon electrode. Sensors Actuators B Chem 251:192–199. https://doi.org/10.1016/j.snb.2017.05.035

    Article  CAS  Google Scholar 

  14. Negahdary M, Behjati-Ardakani M, Sattarahmady N, Yadegari H, Heli H (2017) Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-applied to early detection of myocardial infarction. Sensors Actuators B Chem 252:62–71. https://doi.org/10.1016/j.snb.2017.05.149

    Article  CAS  Google Scholar 

  15. Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K (2016) A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin a. Nano 8(6):3439–3446. https://doi.org/10.1039/c5nr08234j

    CAS  Google Scholar 

  16. Wang L, Yang W, Li T, Li D, Cui Z, Wang Y, Ji S, Song Q, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184:3145–3151. https://doi.org/10.1007/s00604-017-2327-8

    Article  CAS  Google Scholar 

  17. Mao Y, Fan T, Gysbers R, Tan Y, Liu F, Lin S, Jiang Y (2017) A simple and sensitive aptasensor for colorimetric detection of adenosine triphosphate based on unmodified gold nanoparticles. Talanta 168:279–285. https://doi.org/10.1016/j.talanta.2017.03.014

    Article  CAS  Google Scholar 

  18. Lavaee P, Danesh NM, Ramezani M, Abnous K, Taghdisi SM (2017) Colorimetric aptamer based assay for the determination of fluoroquinolones by triggering the reduction-catalyzing activity of gold nanoparticles. Microchim Acta 184(7):2039–2045. https://doi.org/10.1007/s00604-017-2213-4

    Article  CAS  Google Scholar 

  19. Li N, Liu SG, Zhu YD, Liu T, Lin SM, Shi Y, Luo HQ, Li NB (2017) Tuning gold nanoparticles growth via DNA and carbon dots for nucleic acid and protein detection. Sensors Actuators B Chem 251:455–461. https://doi.org/10.1016/j.snb.2017.05.071

    Article  CAS  Google Scholar 

  20. Kim H-S, Kim Y-J, Chon J-W, Kim D-H, Yim J-H, Kim H, Seo K-H (2017) Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula. Sensors Actuators B Chem 239:94–99. https://doi.org/10.1016/j.snb.2016.07.173

    Article  CAS  Google Scholar 

  21. Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM (2016) A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 78:80–86. https://doi.org/10.1016/j.bios.2015.11.028

    Article  CAS  Google Scholar 

  22. Park Y, Im AR, Hong YN, Kim CK, Kim YS (2011) Detection of malathion, fenthion and methidathion by using heparin-reduced gold nanoparticles [conference paper]. J Nanosci Nanotechnol 11(9):7570–7578. https://doi.org/10.1166/jnn.2011.5123

    Article  CAS  Google Scholar 

  23. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis [journal article]. Microchim Acta 183(7):2063–2083. https://doi.org/10.1007/s00604-016-1858-8

    Article  CAS  Google Scholar 

  24. Sun K, Xia N, Zhao L, Liu K, Hou W, Liu L (2017) Aptasensors for the selective detection of alpha-synuclein oligomer by colorimetry, surface plasmon resonance and electrochemical impedance spectroscopy. Sensors Actuators B Chem 245:87–94. https://doi.org/10.1016/j.snb.2017.01.171

    Article  CAS  Google Scholar 

  25. Bala R, Dhingra S, Kumar M, Bansal K, Mittal S, Sharma RK, Wangoo N (2017) Detection of organophosphorus pesticide – malathion in environmental samples using peptide and aptamer based nanoprobes. Chem Eng J 311:111–116. https://doi.org/10.1016/j.cej.2016.11.070

    Article  CAS  Google Scholar 

  26. Taghdisi SM, Danesh NM, Ramezani M, Alibolandi M, Abnous K (2017) Voltammetric determination of lead(II) by using exonuclease III and gold nanoparticles, and by exploiting the conformational change of the complementary strand of an aptamer. Microchim Acta 184:1–8. https://doi.org/10.1007/s00604-017-2316-y

    Article  Google Scholar 

  27. Zhang Y, Wang Y, Zhu W, Wang J, Yue X, Liu W, Zhang D, Wang J (2017) Simultaneous colorimetric determination of bisphenol a and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Microchim Acta 184(3):951–959. https://doi.org/10.1007/s00604-017-2092-8

    Article  CAS  Google Scholar 

  28. Gao Z, Qiu Z, Lu M, Shu J, Tang D (2017) Hybridization chain reaction-based colorimetric aptasensor of adenosine 5′-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes. Biosens Bioelectron 89(Part 2):1006–1012. https://doi.org/10.1016/j.bios.2016.10.043

    Article  CAS  Google Scholar 

  29. Barahona F, Bardliving CL, Phifer A, Bruno JG, Batt CA (2013) An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy. Ind Biotechnol 9(1):42–50. https://doi.org/10.1089/ind.2012.0029

    Article  CAS  Google Scholar 

  30. Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-au nanoparticles-β-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30. https://doi.org/10.1016/j.bios.2014.10.007

    Article  CAS  Google Scholar 

  31. Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A (2012) Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care 16(4):R136. https://doi.org/10.1186/cc11441

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Taghdisi.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 4.48 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abnous, K., Danesh, N.M., Ramezani, M. et al. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta 185, 216 (2018). https://doi.org/10.1007/s00604-018-2752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2752-3

Keywords

Navigation