Microchimica Acta

, 185:153 | Cite as

Ion beam sputtering deposition of silver nanoparticles and TiOx/ZnO nanocomposites for use in surface enhanced vibrational spectroscopy (SERS and SEIRAS)

  • Angela I. López-LorenteEmail author
  • Rosaria A. Picca
  • Javier Izquierdo
  • Christine Kranz
  • Boris Mizaikoff
  • Cinzia Di Franco
  • Soledad Cárdenas
  • Nicola Cioffi
  • Gerardo Palazzo
  • Antonio Valentini
Original Paper


Hybrids consisting of silver nanoparticles (in varying fractions) and of TiOx/ZnO were prepared via top-down ion beam sputtering (IBS) deposition on silicon substrates. The deposited nanomaterials were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. It is shown that such composites represent a viable substrate for use in both surface enhanced Raman spectroscopy (SERS) and surface enhanced infrared absorption spectroscopy (SEIRAS), as exemplarily shown for crystal violet as the model analyte. The C-H bending mode at about 1181 cm−1 and the C-N vibration at 1361 cm−1 observed in the SERS and SEIRAS spectra, respectively, have been used as analytical signal. The substrate consisting of TiOx NPs with 33% fraction of silver provides the strongest enhancement in SERS (up to 10,000-fold), while TiOx/AgNPs with thickness of 2 and 1 nm in ion beam sputtering, respectively, provides the best sensitivity in SEIRAS. The substrates also display photocatalytic activity as shown by the degradation of adsorbed crystal violet under ultraviolet irradiation.

Graphical abstract

Schematic of the preparation of hybrid substrates consisting of Ag and TiOx/ZnO nanoparticles via ion beam sputtering deposition. They were applied in both surface enhanced Raman and surface enhanced infrared absorption spectroscopies using crystal violet as model analyte, showing enhancements up to >10,000-fold in Raman.


Metallic nanoparticles Metal oxide nanoparticles Top-down synthesis Surface enhanced infrared spectroscopy Surface enhanced Raman spectroscopy Crystal violet Silicon substrate Photocatalysis 



A.I. López-Lorente and J. Izquierdo thank the Alexander von Humboldt Foundation for the award of a Postdoctoral Fellowship at the Institute of Analytical and Bioanalytical Chemistry (Ulm University, Germany), as well as the Young Investigation Training Program (YITP) from the European Colloid and Interfaces Society financed by the Italian Banking Foundation Association for a research stay at University of Bari (Italy). A.I. López Lorente also acknowledges the Ministry of Education of Spain for a Juan de la Cierva contract at the University of Córdoba (Spain). A.I. López-Lorente and S. Cárdenas wish to thank Spain’s Ministry of Education, Culture and Sport for funding Project CTQ2017-83175-R.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2708_MOESM1_ESM.docx (8.8 mb)
ESM 1 (DOCX 8981 kb)


  1. 1.
    Enders D, Nagao T, Pucci A, Nakayama T, Aono M (2011) Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold. Phys Chem Chem Phys 13:4935–4941CrossRefGoogle Scholar
  2. 2.
    Ohta N, Nomura K, Yagi I (2010) Electrochemical Modification of Surface Morphology of Au/Ti Bilayer Films Deposited on a Si Prism for in Situ Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Langmuir 26:18097–18104CrossRefGoogle Scholar
  3. 3.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P (2008) Metallic Nanoparticle Arrays: A Common Substrate for Both Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption. ACS Nano 2:707–718CrossRefGoogle Scholar
  4. 4.
    Andersson M, Österlund L, Ljungstrom S, Palmqvist A (2002) Preparation of Nanosize Anatase and Rutile TiO2 by Hydrothermal Treatment of Microemulsions and Their Activity for Photocatalytic Wet Oxidation of Phenol. J Phys Chem B 106:10674–10679CrossRefGoogle Scholar
  5. 5.
    Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) N-Doped TiO2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol−Gel Method. J Phys Chem C 112:14595–14602CrossRefGoogle Scholar
  6. 6.
    Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  7. 7.
    Musumeci A, Gosztola D, Schiller T, Dimitrijevic NM, Mujica V, Martin D, Rajh T (2009) SERS of Semiconducting Nanoparticles (TiO2 Hybrid Composites). J Am Chem Soc 131:6040–6041CrossRefGoogle Scholar
  8. 8.
    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR (2008) Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution. J Phys Chem C 112:20095–20098CrossRefGoogle Scholar
  9. 9.
    Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR (2009) Adsorption study of 4-MBA on TiO2 nanoparticles by surface-enhanced Raman spectroscopy. J Raman Spectrosc 40:2004–2008CrossRefGoogle Scholar
  10. 10.
    Tan EZ, Yin PG, You T, Wang H, Guo L (2012) Three Dimensional Design of Large-Scale TiO2 Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Appl Mater Interfaces 4:3432–3437CrossRefGoogle Scholar
  11. 11.
    Ma L, Huang Y, Hou M, Xie Z, Zhang Z (2015) Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates. Sci Rep 5:15442CrossRefGoogle Scholar
  12. 12.
    Yang L, Zhang Y, Ruan W, Zhao B, Xu W, Lombardi JR (2010) Improved surface-enhanced Raman scattering properties of TiO2 nanoparticles by Zn dopant. J Raman Spectrosc 41:721–726Google Scholar
  13. 13.
    Pashkin YA, Nakamura Y, Tsai JS (2000) Room-temperature Al single-electron transistor made by electron-beam lithography. Appl Phys Lett 76:2256–2258CrossRefGoogle Scholar
  14. 14.
    Semin DJ, Rowlen KL (1994) Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties. Anal Chem 66:4324–4331CrossRefGoogle Scholar
  15. 15.
    Cioffi N, Losito I, Torsi L, Farella I, Valentini A, Sabbatini L, Zambonin PG, Bleve-Zacheo T (2002) Analysis of the Surface Chemical Composition and Morphological Structure of Vapor-Sensing Gold−Fluoropolymer Nanocomposites. Chem Mater 14:804–811CrossRefGoogle Scholar
  16. 16.
    Cioffi N, Farella I, Torsi L, Valentini A, Sabbatini L, Zambonin PG (2003) Ion-beam sputtered palladium-fluoropolymer nano-composites as active layers for organic vapours sensors. Sensors Actuators B Chem 93:181–186CrossRefGoogle Scholar
  17. 17.
    Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello L, Tantillo G, Bleve-Zacheo T, Zambonin PG (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616CrossRefGoogle Scholar
  18. 18.
    D’Andrea C, Fazio B, Gucciardi PG, Giordano MC, Martella C, Chiappe D, Toma A, Buatier de Mongeot F, Tantussi F, Vasanthakumar P, Fuso F, Allegrini M (2014) SERS Enhancement and Field Confinement in Nanosensors Based on Self-Organized Gold Nanowires Produced by Ion-Beam Sputtering. J Phys Chem C 118:8571–8580CrossRefGoogle Scholar
  19. 19.
    Quaranta F, Valentini A, Rizzi FR, Casamassima G (1993) Dual-ion-beam sputter deposition of ZnO films. J Appl Phys 74:244–248CrossRefGoogle Scholar
  20. 20.
    Yu WW, White IM (2012) A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst 137:1168–1173CrossRefGoogle Scholar
  21. 21.
    Lai K, Zhang Y, Du R, Zhai F, Rasco BA, Huang Y (2011) Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sens & Instrumen Food Qual 5:19–24CrossRefGoogle Scholar
  22. 22.
    Bibikova O, Haas J, López-Lorente AI, Popov A, Kinnunen M, Meglinski I, Mizaikoff B (2017) Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst 142:951–958CrossRefGoogle Scholar
  23. 23.
    Massarini E, Wästerby P, Landström L, Lejon C, Beck O, Andersson PO (2015) Methodologies for assessment of limit of detection and limit of identification using surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 207:437–446CrossRefGoogle Scholar
  24. 24.
    Kato H, Takemura S, Watanabe Y, Nara T, Hayashi T, Sugiyama T, Hiramatsu T, Nanba N, Nishikawa O, Taniguchi M (2007) Study of dye molecule orientation and configuration in dye molecule doped polythiophene films. J Vac Sci Technol A 25:1547CrossRefGoogle Scholar
  25. 25.
    Osawa M (2001) Surface-Enhanced Infrared Absorption. Top Appl Phys 81:163–187CrossRefGoogle Scholar
  26. 26.
    Lee HM, Jin SM, Kim HM, Suh YD (2013) Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status. Phys Chem Chem Phys 15:5276–5287CrossRefGoogle Scholar
  27. 27.
    Bibikova O, Haas J, López-Lorente AI, Popov A, Kinnunen M, Ryabchikov Y, Kabashin A, Meglinski I, Mizaikoff B (2017) Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles. Anal Chim Acta 990:141–149CrossRefGoogle Scholar
  28. 28.
    Villa JEL, dos Santos DP, Poppi RJ (2016) Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 183:2745–2752CrossRefGoogle Scholar
  29. 29.
    Bu Y, Liu K, Hu Y, Kaneti YV, Brioude A, Jiang X, Wang H, Yu A (2017) Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Microchim Acta 184:2805–2813CrossRefGoogle Scholar
  30. 30.
    Markina NE, Markin AV, Zakharevich AM, Gorayacheva IY (2017) Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Microchim Acta 184:3937–3944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Angela I. López-Lorente
    • 1
    • 2
    Email author
  • Rosaria A. Picca
    • 3
  • Javier Izquierdo
    • 2
  • Christine Kranz
    • 2
  • Boris Mizaikoff
    • 2
  • Cinzia Di Franco
    • 4
  • Soledad Cárdenas
    • 1
  • Nicola Cioffi
    • 3
  • Gerardo Palazzo
    • 3
  • Antonio Valentini
    • 5
  1. 1.Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFNUniversidad de CórdobaCórdobaSpain
  2. 2.Institute of Analytical and Bioanalytical ChemistryUlm UniversityUlmGermany
  3. 3.Dipartimento di ChimicaUniversità degli Studi di Bari Aldo MoroBariItaly
  4. 4.CNR-IFN and Dipartimento Interateneo di Fisica “Michelangelo Merlin”Università degli Studi di Bari “Aldo Moro”BariItaly
  5. 5.Dipartimento Interateneo di FisicaUniversità degli Studi di Bari Aldo MoroBariItaly

Personalised recommendations