Skip to main content
Log in

A regenerable sorbent composed of a zeolite imidazolate framework (ZIF-8), Fe3O4 and graphene oxide for enrichment of atorvastatin and simvastatin prior to their determination by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Graphene oxide (GO), nanosized Fe3O4 and zeolite imidazolate framework-8 (ZIF-8) were hybridized as a multifunctional sorbent for use in microextraction. The sorbent was characterized by SEM, TEM, XRD and FTIR. The composite is porous, has a high specific surface (> 600 m2·g−1) and is paramagnetic. The GO sheets are shown to act as carriers for the Fe3O4 nanoparticles and ZIF-8. The composite is a viable material for the preconcentration of atorvastatin and simvastatin from urine prior to their determination by HPLC with PDA detection. The limits of detection are 116 and 387 pg·mL−1, respectively. Recoveries from spiked urine samples range between 84.7 and 95.7%, with relative standard deviation of ≤4.5%. Enrichment factors range from 169 to 191. The method was successfully applied to the determination of atorvastatin in urine. Moreover, this sorbent is regenerable and recyclable for at least seven times without obvious decrease in performance.

A composite sorbent composed of a zeolite imidazolate framework, Fe3O4 and graphene oxide was applied to the extraction of statins in urine prior their determination by HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel M, Kothari C (2017) Critical review of statins: a bio-analytical perspective for therapeutic drug monitoring. TrAC Trends Anal Chem 86:206–221. https://doi.org/10.1016/j.trac.2016.10.011

    Article  CAS  Google Scholar 

  2. Diao X, Huestis MA (2017) Approaches, challenges, and advances in metabolism of new synthetic cannabinoids and identification of optimal urinary marker metabolites. Clin Pharmacol Ther 101(2):239–253. https://doi.org/10.1002/cpt.534

    Article  CAS  Google Scholar 

  3. Esteve-Romero J, Albiol-Chiva J, Peris-Vicente J (2016) A review on development of analytical methods to determine monitorable drugs in serum and urine by micellar liquid chromatography using direct injection. Anal Chim Acta 926:1–16. https://doi.org/10.1016/j.aca.2016.04.026

    Article  CAS  Google Scholar 

  4. Bylda C, Thiele R, Kobold U, Volmer DA (2014) Recent advances in sample preparation techniques to overcome difficulties encountered during quantitative analysis of small molecules from biofluids using LC-MS/MS. Analyst 139(10):2265–2276. https://doi.org/10.1039/c4an00094c

    Article  CAS  Google Scholar 

  5. Panuwet P, Hunter RE, Jr., D’Souza PE, Chen X, Radford SA, Cohen JR, Marder ME, Kartavenka K, Ryan PB, Barr DB (2016) Biological matrix effects in quantitative tandem mass spectrometry-based analytical methods: advancing biomonitoring. Crit Rev Anal Chem 46 (2):93–105. doi:https://doi.org/10.1080/10408347.2014.980775

  6. Soleymani J, Perez-Guaita D, Hasanzadeh M, Shadjou N, Jouyban A (2017) Materials and methods of signal enhancement for spectroscopic whole blood analysis: novel research overview. TrAC Trends Anal Chem 86:122–142. https://doi.org/10.1016/j.trac.2016.10.006

    Article  CAS  Google Scholar 

  7. Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal Chem 59:26–41. https://doi.org/10.1016/j.trac.2014.03.011

    Article  CAS  Google Scholar 

  8. Clark KD, Zhang C, Anderson JL (2016) Sample preparation for bioanalytical and pharmaceutical analysis. Anal Chem. https://doi.org/10.1021/acs.analchem.6b02935

  9. Ghambarian M, Yamini Y, Esrafili A (2013) Liquid-phase microextraction based on solidified floating drops of organic solvents. Microchim Acta 180(7–8):519–535. https://doi.org/10.1007/s00604-013-0969-8

    Article  CAS  Google Scholar 

  10. Pyrzynska K (2013) Use of nanomaterials in sample preparation. TrAC Trends Anal Chem 43:100–108. https://doi.org/10.1016/j.trac.2012.09.022

    Article  CAS  Google Scholar 

  11. Xu J, Wu P, Ye E-C, Yuan B-F, Feng Y-Q (2016) Metal oxides in sample pretreatment. TrAC Trends Anal Chem 80:41–56. https://doi.org/10.1016/j.trac.2016.02.027

    Article  CAS  Google Scholar 

  12. Peng J, Liu D, Shi T, Tian H, Hui X, He H (2017) Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water. Anal Bioanal Chem 409(17):4157–4166. https://doi.org/10.1007/s00216-017-0365-z

    Article  CAS  Google Scholar 

  13. Gonzalez-Fuenzalida RA, Moliner-Martinez Y, Prima-Garcia H, Ribera A, Campins-Falco P, Zaragoza RJ (2014) Evaluation of superparamagnetic silica nanoparticles for extraction of Triazines in magnetic in-tube solid phase microextraction coupled to capillary liquid chromatography. Nanomaterials (Basel) 4(2):242–255. https://doi.org/10.3390/nano4020242

    Article  CAS  Google Scholar 

  14. Ligler FS, White HS (2013) Nanomaterials in analytical chemistry. Anal Chem 85(23):11161–11162. https://doi.org/10.1021/ac403331m

    Article  CAS  Google Scholar 

  15. Gu ZY, Yang CX, Chang N, Yan XP (2012) Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45(5):734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  Google Scholar 

  16. Ouyang G, Vuckovic D, Pawliszyn J (2011) Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem Rev 111(4):2784–2814. https://doi.org/10.1021/cr100203t

    Article  CAS  Google Scholar 

  17. Wang M, Niu Y, Zhou J, Wen H, Zhang Z, Luo D, Gao D, Yang J, Liang D, Li Y (2016) The dispersion and aggregation of graphene oxide in aqueous media. Nano 8(30):14587–14592. https://doi.org/10.1039/c6nr03503e

    CAS  Google Scholar 

  18. Ge D, Lee HK (2012) Zeolite imidazolate frameworks 8 as sorbent and its application to sonication-assisted emulsification microextraction combined with vortex-assisted porous membrane-protected micro-solid-phase extraction for fast analysis of acidic drugs in environmental water samples. J Chromatogr A 1257:19–24. https://doi.org/10.1016/j.chroma.2012.08.032

    Article  CAS  Google Scholar 

  19. Ahmed I, Jhung SH (2014) Composites of metal–organic frameworks: preparation and application in adsorption. Mater Today 17(3):136–146. https://doi.org/10.1016/j.mattod.2014.03.002

    Article  CAS  Google Scholar 

  20. Sleijfer S, van der Gaast A, Planting AS, Stoter G, Verweij J (2005) The potential of statins as part of anti-cancer treatment. Eur J Cancer 41(4):516–522. https://doi.org/10.1016/j.ejca.2004.12.009

    Article  CAS  Google Scholar 

  21. Nováková L, Šatínský D, Solich P (2008) HPLC methods for the determination of simvastatin and atorvastatin. TrAC Trends Anal Chem 27(4):352–367. https://doi.org/10.1016/j.trac.2008.01.013

    Article  Google Scholar 

  22. Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A 103(27):10186–10191. https://doi.org/10.1073/pnas.0602439103

    Article  CAS  Google Scholar 

  23. Wang X, An J, Li J, Ye N (2017) A capillary coated with a metal-organic framework for the capillary electrochromatographic determination of cephalosporins. Microchim Acta 184(5):1345–1351. https://doi.org/10.1007/s00604-017-2131-5

    Article  CAS  Google Scholar 

  24. Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Yu H-Q (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchim Acta 184(10):4099–4106. https://doi.org/10.1007/s00604-017-2439-1

    Article  CAS  Google Scholar 

  25. Kong D, Bao T, Chen Z (2017) In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim Acta 184(4):1169–1176. https://doi.org/10.1007/s00604-017-2095-5

    Article  CAS  Google Scholar 

  26. Wang Q, Wang Y, Zhang Z, Tong Y, Zhang L (2017) Waxberry-like magnetic porous carbon composites prepared from a nickel-organic framework for solid-phase extraction of fluoroquinolones. Microchim Acta 184(10):4107–4115. https://doi.org/10.1007/s00604-017-2438-2

    Article  CAS  Google Scholar 

  27. Leus K, Bogaerts T, De Decker J, Depauw H, Hendrickx K, Vrielinck H, Van Speybroeck V, Van Der Voort P (2016) Systematic study of the chemical and hydrothermal stability of selected “stable” metal organic frameworks. Microporous Mesoporous Mater 226:110–116. https://doi.org/10.1016/j.micromeso.2015.11.055

    Article  CAS  Google Scholar 

  28. Liu H, Chen L, Ding J (2017) A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim Acta 184(10):4091–4098. https://doi.org/10.1007/s00604-017-2442-6

    Article  CAS  Google Scholar 

  29. Wang T, Liu S, Gao G, Zhao P, Lu N, Lun X, Hou X (2017) Magnetic solid phase extraction of non-steroidal anti-inflammatory drugs from water samples using a metal organic framework of type Fe3O4/MIL-101(Cr), and their quantitation by UPLC-MS/MS. Microchim Acta 184(8):2981–2990. https://doi.org/10.1007/s00604-017-2319-8

    Article  CAS  Google Scholar 

  30. Chen P, Cui B, Bu Y, Yang Z, Wang Y (2017) Synthesis and characterization of mesoporous and hollow-mesoporous MxFe3-xO4 (M=mg, Mn, Fe, co, Ni, cu, Zn) microspheres for microwave-triggered controllable drug delivery. J Nanopart Res 19(12). https://doi.org/10.1007/s11051-017-4096-z

  31. Mottillo C, Lu Y, Pham M-H, Cliffe MJ, Do T-O, Friscic T (2013) Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, co) oxides. Green Chem 15(8):2121–2131. https://doi.org/10.1039/c3gc40520f

    Article  CAS  Google Scholar 

  32. Zhao L, Zhao P, Wang L, Ma X, Hou X, Li F (2014) A dispersive liquid-liquid microextraction method based on the solidification of a floating organic drop combined with HPLC for the determination of lovastatin and simvastatin in rat urine. Biomed Chromatogr 28(6):895–900. https://doi.org/10.1002/bmc.3205

    Article  CAS  Google Scholar 

  33. Miao X-S, Metcalfe CD (2003) Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography–electrospray ionization tandem mass spectrometry. J Chromatogr A 998(1–2):133–141. https://doi.org/10.1016/s0021-9673(03)00645-9

    Article  CAS  Google Scholar 

  34. Tajabadi F, Ghambarian M, Yamini Y (2015) Evaluation of three-phase hollow fiber microextraction based on two immiscible solvents coupled to GC and HPLC for determination of statin drugs in biological fluids. Anal Methods 7(7):2959–2967. https://doi.org/10.1039/c4ay02980a

    Article  CAS  Google Scholar 

  35. Panahi HA, Chabouk M, Ejlali M (2014) Hollow-fiber-supported liquid membrane microextraction of amlodipine and atorvastatin. J Sep Sci 37(15):2018–2024. https://doi.org/10.1002/jssc.201400138

    Article  CAS  Google Scholar 

  36. Dastkhoon M, Ghaedi M, Asfaram A, Arabi M, Ostovan A, Goudarzi A (2017) Cu@SnS/SnO2 nanoparticles as novel sorbent for dispersive micro solid phase extraction of atorvastatin in human plasma and urine samples by high-performance liquid chromatography with UV detection: application of central composite design (CCD). Ultrason Sonochem 36:42–49. https://doi.org/10.1016/j.ultsonch.2016.10.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Independent Innovation Fund Project of Agricultural Science and Technology of Jiangsu Province in 2017 (No CX (17)1003), the Guizhou Provincial Science and Technology Department Joint Fund Project (Qian Kehe LH word [2016] No. 7076), the Project Funded by Research Project of Environment Protection Department of Jiangsu Province (Grant No.2015026) and Chinese College Students Innovation Project for the R&D of Novel Drugs (J1310032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2.25 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Tian, H., Du, Q. et al. A regenerable sorbent composed of a zeolite imidazolate framework (ZIF-8), Fe3O4 and graphene oxide for enrichment of atorvastatin and simvastatin prior to their determination by HPLC. Microchim Acta 185, 141 (2018). https://doi.org/10.1007/s00604-018-2697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2697-6

Keywords

Navigation