A stir foam composed of graphene oxide, poly(ethylene glycol) and natural latex for the extraction of preservatives and antioxidant

Abstract

A stir foam composed of graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) was prepared for use in micro-solid phase extraction sorbent of preservative agents and antioxidants from cosmetic products. The extracted analytes were quantified by GC-MS. Under the optimized conditions, the calibration plots are linear in the concentration ranges between 5.0 μg·L−1 to 1.0 mg·L−1 for benzoic acid, of 10.0 μg·L−1 to 1.0 mg·L−1 for 2-methyl-3-isothiazolinone (MI), and between 1.0 μg·L−1 and 1.0 mg·L−1 for both 3-tert-butyl-4-hydroxyanisole (BHA) and 2,6-di-tert-butyl-p-hydroxytoluene (BHT). The LODs are 1.0 μg·L−1 for benzoic acid, 5.0 μg·L−1 for MI and 0.5 μg·L−1 for both BHA and BHT. The stir-foam can be easily prepared, is inexpensive and well reproducible (RSDs <3%, for n = 6). It can be re-used for up to 12 times after which extraction efficiency has dropped to 90%. The method was successfully applied to the determination of preservatives and antioxidants in cosmetic samples. Recoveries from spiked samples ranged between 94.5 ± 2.1% and 99.8 ± 1.8%.

A stir foam was prepared from graphene oxide, poly(ethylene glycol) and natural latex (GO-PEG-NL) and is shown to be a most viable sorbent for the microextraction of trace amounts of preservative agents and antioxidants from cosmetic products.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Feliciano RP, Mecha E, Bronze MR, Rodriguez-Mateos A (2016) Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J Chromatogr A 1464:21–31. https://doi.org/10.1016/j.chroma.2016.08.027

    CAS  Article  Google Scholar 

  2. 2.

    Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and Application of Porous Membrane-Protected Carbon Nanotube Micro-Solid-Phase Extraction Combined with Gas Chromatography/Mass Spectrometry. Anal Chem 78(8):2853–2858. https://doi.org/10.1021/ac060240i

    CAS  Article  Google Scholar 

  3. 3.

    Naing NN, Li SFY, Lee HK (2016) Evaluation of graphene-based sorbent in the determination of polar environmental contaminants in water by micro-solid phase extraction-high performance liquid chromatography. J Chromatogr A 1427:29–36. https://doi.org/10.1016/j.chroma.2015.12.012

    CAS  Article  Google Scholar 

  4. 4.

    González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2016) Nanomaterials as sorbents for food sample analysis. TrAC Trends Anal Chem 85(Part C):203–220. https://doi.org/10.1016/j.trac.2016.09.009

    Article  Google Scholar 

  5. 5.

    Bendicho C, Costas-Mora I, Romero V, Lavilla I (2015) Nanoparticle-enhanced liquid-phase microextraction. TrAC - Trends in Analytical Chemistry 68:78–87. https://doi.org/10.1016/j.trac.2015.02.007

    CAS  Article  Google Scholar 

  6. 6.

    Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G (2013) Application of nanomaterials in sample preparation. J Chromatogr A 1300:2–16. https://doi.org/10.1016/j.chroma.2013.04.010

    CAS  Article  Google Scholar 

  7. 7.

    Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514. https://doi.org/10.1016/S0008-6223(00)00155-X

    CAS  Article  Google Scholar 

  8. 8.

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    CAS  Article  Google Scholar 

  9. 9.

    Cai Y, Jiang G, Liu J, Zhou Q (2003) Multiwalled Carbon Nanotubes as a Solid-Phase Extraction Adsorbent for the Determination of Bisphenol A, 4-n-Nonylphenol, and 4-tert-Octylphenol. Anal Chem 75(10):2517–2521. https://doi.org/10.1021/ac0263566

    CAS  Article  Google Scholar 

  10. 10.

    Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G (2011) Graphene and Graphene Oxide Sheets Supported on Silica as Versatile and High-Performance Adsorbents for Solid-Phase Extraction. Angew Chem Int Ed 50(26):5913–5917. https://doi.org/10.1002/anie.201007138

    CAS  Article  Google Scholar 

  11. 11.

    Liu P-R, Zhang H-L, Wang T, Yang W-L, Hong Y, Hou Y-L (2016) Functional graphene-based magnetic nanocomposites as magnetic flocculant for efficient harvesting of oleaginous microalgae. Algal Res 19:86–95. https://doi.org/10.1016/j.algal.2016.07.008

    Article  Google Scholar 

  12. 12.

    Wen Q, Wang Y, Xu K, Li N, Zhang H, Yang Q, Zhou Y (2016) Magnetic solid-phase extraction of protein by ionic liquid-coated Fe@graphene oxide. Talanta 160:481–488. https://doi.org/10.1016/j.talanta.2016.07.031

    CAS  Article  Google Scholar 

  13. 13.

    Li J, Li Y, Niu S, Li N (2017) Ultrasonic-assisted synthesis of phosphorus graphene oxide/poly (vinyl alcohol) polymer and surface resistivity research of phosphorus graphene oxide/poly (vinyl alcohol) film. Ultrason Sonochem 36(Supplement C):277–285. https://doi.org/10.1016/j.ultsonch.2016.12.009

  14. 14.

    Ning F, Qiu T, Wang Q, Peng H, Li Y, Wu X, Zhang Z, Chen L, Xiong H (2017) Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem 221:1797–1804. https://doi.org/10.1016/j.foodchem.2016.10.101

    CAS  Article  Google Scholar 

  15. 15.

    Fan W, He M, Wu X, Chen B, Hu B (2015) Graphene oxide/polyethyleneglycol composite coated stir bar for sorptive extraction of fluoroquinolones from chicken muscle and liver. J Chromatogr A 1418:36–44. https://doi.org/10.1016/j.chroma.2015.09.052

    CAS  Article  Google Scholar 

  16. 16.

    Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, Hooper AB, Wititsuwannakul R (2008) Antimicrobial activity of a protein purified from the latex of Hevea brasiliensis on oral microorganisms. Mycoses 51(4):301–307. https://doi.org/10.1111/j.1439-0507.2008.01490.x

    CAS  Article  Google Scholar 

  17. 17.

    Najib NN, Ariff ZM, Bakar AA, Sipaut CS (2011) Correlation between the acoustic and dynamic mechanical properties of natural rubber foam: Effect of foaming temperature. Mater Des 32(2):505–511. https://doi.org/10.1016/j.matdes.2010.08.030

    CAS  Article  Google Scholar 

  18. 18.

    Kang SH, Kim H (1997) Simultaneous determination of methylparaben, propylparaben and thimerosal by high-performance liquid chromatography and electrochemical detection. J Pharm Biomed Anal 15(9–10):1359–1364. https://doi.org/10.1016/s0731-7085(96)02031-6

    CAS  Article  Google Scholar 

  19. 19.

    García-Jiménez JF, Valencia MC, Capitán-Vallvey LF (2007) Simultaneous determination of antioxidants, preservatives and sweetener additives in food and cosmetics by flow injection analysis coupled to a monolithic column. Anal Chim Acta 594(2):226–233. https://doi.org/10.1016/j.aca.2007.05.040

    Article  Google Scholar 

  20. 20.

    Fewings J, Menné T (1999) An update of the risk assessment for methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) with focus on rinse-off products. Contact Dermatitis 41(1):1–13

    CAS  Article  Google Scholar 

  21. 21.

    Nagai F, Okubo T, Ushiyama K, Satoh K, Kano I (1996) Formation of 8-hydroxydeoxyguanosine in calf thymus DNA treated with tert-butylhydroquinone, a major metabolite of butylated hydroxyanisole. Toxicol Lett 89(2):163–167. https://doi.org/10.1016/S0378-4274(96)03800-3

    CAS  Article  Google Scholar 

  22. 22.

    Chen J, Ding Z (2007) Evaluation method of multiaxial low cycle fatigue life for cubic single crystal material. Front Mech Eng China 2(3):278–282. https://doi.org/10.1007/s11465-007-0048-0

    Article  Google Scholar 

  23. 23.

    Hung H, Blanchard P, Halsall CJ, Bidleman TF, Stern GA, Fellin P, Muir DCG, Barrie LA, Jantunen LM, Helm PA, Ma J, Konoplev A (2005) Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic: Results from a decade of monitoring. Sci Total Environ 342(1–3):119–144. https://doi.org/10.1016/j.scitotenv.2004.12.058

    CAS  Article  Google Scholar 

  24. 24.

    Celeiro M, Guerra E, Lamas JP, Lores M, Garcia-Jares C, Llompart M (2014) Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. J Chromatogr A 1344:1–14. https://doi.org/10.1016/j.chroma.2014.03.070

    CAS  Article  Google Scholar 

  25. 25.

    Guan Y, Chu Q, Fu L, Ye J (2005) Determination of antioxidants in cosmetics by micellar electrokinetic capillary chromatography with electrochemical detection. J Chromatogr A 1074(1–2):201–204. https://doi.org/10.1016/j.chroma.2005.03.063

    CAS  Article  Google Scholar 

  26. 26.

    Lee M-R, Lin C-Y, Li Z-G, Tsai T-F (2006) Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography–mass spectrometry. J Chromatogr A 1120(1–2):244–251. https://doi.org/10.1016/j.chroma.2006.01.075

    CAS  Article  Google Scholar 

  27. 27.

    Alvarez-Rivera G, Llompart M, Garcia-Jares C, Lores M (2015) Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion. J Chromatogr A 1390:1–12. https://doi.org/10.1016/j.chroma.2015.02.056

    CAS  Article  Google Scholar 

  28. 28.

    Zhu F, Wang J, Zhu L, Tan L, Feng G, Liu S, Dai Y, Wang H (2016) Preparation of molecularly imprinted polymers using theanine as dummy template and its application as SPE sorbent for the determination of eighteen amino acids in tobacco. Talanta 150:388–398. https://doi.org/10.1016/j.talanta.2015.12.038

    CAS  Article  Google Scholar 

  29. 29.

    Alvarez-Rivera G, Vila M, Lores M, Garcia-Jares C, Llompart M (2014) Development of a multi-preservative method based on solid-phase microextraction–gas chromatography–tandem mass spectrometry for cosmetic analysis. J Chromatogr A 1339:13–25. https://doi.org/10.1016/j.chroma.2014.02.075

    CAS  Article  Google Scholar 

  30. 30.

    Guo H, Chen G, Wu M, Ma J, Jia Q (2017) Preparation of a porous aromatic framework via the Chan-Lam reaction: a coating for solid-phase microextraction of antioxidants and preservatives. Microchim Acta 184(11):4409–4416. https://doi.org/10.1007/s00604-017-2461-3

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the Thailand Research Fund, Faculty of Science and Prince of Songkla University (BRG6080009); the Center of Excellence for Innovation in Chemistry (PERCH-CIC); the Trace Analysis and Biosensor Research Center (TAB-RC), Prince of Songkla University; Department of Chemistry, Faculty of Science and Graduate School, Prince of Songkla University, Hat Yai, Songkhla. Financial support for Charinrat Siritham from Prince of Songkla University Ph.D. Scholarship is also gratefully acknowledged. The authors would also like to thank Asst. Prof. Dr. Ekwipoo Kalkornsurapranee for preparation of natural latex foam and Mr. Thomas Duncan Coyne for his help in preparing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Proespichaya Kanatharana.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 963 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siritham, C., Thammakhet-Buranachai, C., Thavarungkul, P. et al. A stir foam composed of graphene oxide, poly(ethylene glycol) and natural latex for the extraction of preservatives and antioxidant. Microchim Acta 185, 148 (2018). https://doi.org/10.1007/s00604-017-2643-z

Download citation

Keywords

  • Micro-solid phase extraction
  • BHA
  • BHT
  • Cosmetics
  • MI
  • Porous sorbent