Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene


A nanoporous platinum-yttrium alloy (NP-PtY) was fabricated by dealloying ribbons of a PtYAl alloy. Owing to the high porosity and the synergistic effect of Y in the Pt backbone, the NP-PtY exhibits superior structural stability, reproducibility and electrocatalytic activity. An electrochemical sensor was developed for the highly sensitive and selective detection of dopamine (DA) based on the use of a glassy carbon electrode modified with NP-PtY alloy and graphene. The sensor, best operated at 0.16 V vs. SCE, has a linear range covering the 0.9 to 82 μM concentration range, a 0.36 μM detection limit (at S/N = 3), and good selectivity over tyramine, tryptamine, phenethylamine, uric acid, and ascorbic acid. It gave satisfactory results in the determination of DA in spiked samples of urine.

Nanoporous platinum-yttrium alloy (NP-PtY) was fabricated by means of a one-step dealloying process. A glassy carbon electrode modified with the NP-PtY and graphene nanocomposite exhibits a wide linear range and a low detection limit towards dopamine. The sensor has remarkable reproducibility, stability and selectivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459–1474

    CAS  Article  Google Scholar 

  2. 2.

    Wang L, Mei L, Liu X, Shi JK, Li YH, Gu N, Cui RJ (2015) A nanocomposite prepared from helical carbon nanotubes, polyallylamine hydrochloride and CdSe quantum dots for electrochemiluminescent determination of dopamine. Microchim Acta 182:1661–1668

    CAS  Article  Google Scholar 

  3. 3.

    Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57:899–907

    CAS  Article  Google Scholar 

  4. 4.

    Carrera V, Sabater E, Vilanova E, Sogorb MA (2007) A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. J Chromatogr B 847:88–94

    CAS  Article  Google Scholar 

  5. 5.

    Karimi-Maleh H, Hatami M, Moradi R, Khalilzadeh MA, Amiri S, Sadeghifar H (2016) Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Microchim Acta 183:2957–2964

    CAS  Article  Google Scholar 

  6. 6.

    Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182(13–14):2091–2114

    CAS  Article  Google Scholar 

  7. 7.

    Hsieh YS, Hong BD, Lee CL (2016) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183:905–910

    CAS  Article  Google Scholar 

  8. 8.

    Numan A, Shahid MM, Omar FS, Rafique S, Bashir S, Ramesh K, Ramesh S (2017) Binary nanocomposite based on Co3O4 nanocubes and multiwalled carbon nanotubes as an ultrasensitive platform for amperometric determination of dopamine. Microchim Acta 184:2739–2748

    CAS  Article  Google Scholar 

  9. 9.

    Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182(11–12):2001–2007

    CAS  Article  Google Scholar 

  10. 10.

    Zhao DY, Fan DW, Wang JP, Xu CX (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182(7–8):1345–1352

    CAS  Article  Google Scholar 

  11. 11.

    Xiao F, Zhao FQ, Mei DP, Mo ZR, Zeng BZ (2009) Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M=Ru, Pd and Au) nanoparticles on carbon nanotubes-ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    CAS  Article  Google Scholar 

  12. 12.

    Xu CX, Liu YQ, Su F, Liu AH, Qiu HJ (2011) Nanoporous PtAg and PtCu alloy with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosens Bioelectron 27:160–166

    Article  Google Scholar 

  13. 13.

    Duan HM, Hao Q, Xu CX (2014) Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction. J Power Sources 269:589–596

    CAS  Article  Google Scholar 

  14. 14.

    Xu CX, Wang J, Zhou J (2013) Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. Sensors Actuators B Chem 182:408–415

    CAS  Article  Google Scholar 

  15. 15.

    Duan HM, Xu CX (2015) Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction. J Power Sources 280:483–490

    CAS  Article  Google Scholar 

  16. 16.

    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556

    CAS  Article  Google Scholar 

  17. 17.

    Escudero-Escribano M, Verdaguer-asadevall A, Malacrida P, Gronbjerg U, Knudsen BP, Jepsen AK, Rossmeisl J, Stephens IEL, Chorkendorff I (2012) Pt5Gd as a highly active and stable catalyst for oxygen electroreduction. J Am Chem Soc 134:16476–16479

    CAS  Article  Google Scholar 

  18. 18.

    Hernandez-Fernandez P, Masini F, McCarthy DN, Strebel CE, Friebel DN, Deiana D, Malacrida P, Nierhoff A, Bodini A, Wise AM, Nielsen JH, Hansen TW, Nilsson A, Stephens IEL, Chorkendorff I (2014) Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction. Nat Chem 6:732–738

    CAS  Article  Google Scholar 

  19. 19.

    Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:97–114

    CAS  Article  Google Scholar 

  20. 20.

    Liao CZ, Zhang M, Niu LY, Zheng ZJ, Yan F (2014) Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. J Mater Chem B 2:191–200

    CAS  Article  Google Scholar 

  21. 21.

    Feng XM, Zhang Y, Zhou JH, Li Y, Chen SF, Zhang L, Ma YW, Wang LH, Yan XH (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7:2427–2432

    CAS  Article  Google Scholar 

  22. 22.

    Xu CX, Ding Y (2010) Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11:3320

    CAS  Article  Google Scholar 

  23. 23.

    Choi SI, Xie SF, Shao MH, Odell JH, Lu N, Peng H, Protsailo L, Guerrero S, Park J, Xia XH, Wang JG, Kim MJ, Xia YN (2013) Synthesis and characterization of 9 nm Pt-Ni Octahedra with a record high activity of 3.3 A/mg Pt for the oxygen reduction reaction. Nano Lett 13:3420–3425

    CAS  Article  Google Scholar 

  24. 24.

    Cui RJ, Mei L, Han GJ, Chen JY (2017) Facile synthesis of nanoporous Pt-Y alloy with enhanced electrocatalytic activity and durability. ChemPhysChem 7:41826

    CAS  Google Scholar 

  25. 25.

    Liu ZL, Ling XY, Su XD, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240

    CAS  Article  Google Scholar 

  26. 26.

    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy, physical electronics. Physical Electronics Inc, Eden Prairie

    Google Scholar 

  27. 27.

    Corcoran CJ, Tavassol H, Rigsby MA, Bagus PS, Wieckowski A (2010) Application of XPS to study electrocatalysts for fuel cells. J Power Sources 195:7856–7879

    CAS  Article  Google Scholar 

  28. 28.

    How GTS, Pandikumar A, Ming HN, Ngee LH (2014) Highly exposed {001} facets of titanium dioxide modified with reduced graphene oxide for dopamine sensing. Sci Rep 4:5044

    CAS  Article  Google Scholar 

  29. 29.

    Li LL, Liu HY, Shen YY, Zhang JR, Zhu JJ (2011) Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem 83:661–665

    CAS  Article  Google Scholar 

  30. 30.

    Du J, Yue RR, Ren FF, Yao ZQ, Jiang FX, Yang P, Du YK (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53:220–224

    CAS  Article  Google Scholar 

  31. 31.

    Ramakrishnan S, Pradeep K, Raghul A, Senthilkumar R, Rangarajan M, Kothurkar NK (2015) One-step synthesis of Pt-decorated graphene-carbon nanotubes for the electrochemical sensing of dopamine, uric acid and ascorbic acid. Anal Methods 7:779–786

    CAS  Article  Google Scholar 

  32. 32.

    Cui RJ, Wang XY, Zhang GH, Wang C (2012) Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sensors Actuators B Chem 161:1139–1143

    CAS  Article  Google Scholar 

Download references


We greatly appreciate the support of the National Natural Science Foundation of China (51371004), the Major Natural Science Foundation of Jiangsu Provincial Education Department (16KJA150007, 13KJA430001) and the Qing Lan Project (SZ2014005).

Author information



Corresponding authors

Correspondence to Rongjing Cui or Genhua Zhang.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material


(DOCX 72993 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Tian, C., Li, X. et al. Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Microchim Acta 185, 98 (2018). https://doi.org/10.1007/s00604-017-2624-2

Download citation


  • Electrochemical sensor
  • Transmission electron microscopy
  • Cyclic voltammograms
  • Dealloying
  • Differential pulse voltammetry