Skip to main content
Log in

Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript


An electrochemiluminescent (ECL) aptamer based assay is described for thrombin. It is based on the use of carbon dots (C-dots) placed on polydopamine nanospheres loaded with silver nanoparticles (PDANS@Ag) and with probe DNA (pDNA). The PDANS possess high specific surface and can load a large number of C-dots. The AgNPs, in turn, enhance the ECL emission of the C-dots. Platinum functionalized graphene (Gr-Pt) can connect capture DNA (cDNA). The ECL nanoprobe consisting of PDANS@Ag/C-dots was placed on a glassy carbon electrode modified with Gr-Pt/cDNA/BSA via hybridization between cDNA and pDNA. On applying voltages from −1.8 V to 0 V, a strong ECL signal is generated. If thrombin is added, it will bind to cDNA. This leads to the release of pDNA from the electrode surface and a decrease in ECL intensity. Response to thrombin is linear in the 1.0 fmol·L−1 to 5.0 nmol·L−1 concentration range, with a 0.35 fmol·L−1 detection limit. The assay is stable, repeatable and selective, which demonstrates its clinical applicability.

Carbon dots (C-dots) placed on polydopamine nanospheres loaded with silver nanoparticles (PDANS@Ag) for electrochemiluminescent (ECL) detection of thrombin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others


  1. Wang Y, Luo W, Reiser G (2008) Trypsin and trypsin-like proteases in the brain: proteolysis and cellular functions. Cell Mol Life Sci 65(2):237–252

    Article  CAS  Google Scholar 

  2. Wang X, Sun D, Tong Y, Zhong Y, Chen Z (2017) A voltammetric aptamer-based thrombin biosensor exploiting signal amplification via synergetic catalysis by DNAzyme and enzyme decorated AuPd nanoparticles on a poly(o-phenylenediamine) support. Microchim Acta 184(6):1791–1799

    Article  CAS  Google Scholar 

  3. Li Y, Ling L (2015) Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182(9–10):1849–1854

    Article  CAS  Google Scholar 

  4. Wang GL, XL H, XM W, Dong YM, Li ZJ (2016) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183(2):765–771

    Article  CAS  Google Scholar 

  5. Liu J, Cao Z, Yi L (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948

    Article  CAS  Google Scholar 

  6. Huang Y, Lei J, Cheng Y, Ju H (2015) Ratiometric electrochemiluminescent strategy regulated by electrocatalysis of palladium nanocluster for immunosensing. Biosens Bioelectron 77:733–739

    Article  Google Scholar 

  7. Fang L, Lü Z, Wei H, Wang E (2008) A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Anal Chim Acta 628(1):80–86

    Article  CAS  Google Scholar 

  8. Yuan Y, Han S, Hu L, Parveen S, Xu G (2012) Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochimica Acta 82 (complete):484-492

  9. Xu Y, Yin XB, He XW, Zhang YK (2015) Electrochemistry and electrochemiluminescence from a redox-active metal-organic framework. Biosens Bioelectron 68(1):197–203

    Article  CAS  Google Scholar 

  10. Li J, Guo S, Wang E (2012) ChemInform abstract: recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv 43(2):3579–3586

    Article  Google Scholar 

  11. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709):538–544

    Article  CAS  Google Scholar 

  12. Krysmann MJ, Kelarakis A, Dallas P, Giannelis EP (2012) Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. Journal of the American Chemical Society 134 (2):747–750

  13. Wang J, Zhao WW, Li XR, JJ X, Chen HY (2012) Potassium-doped graphene enhanced electrochemiluminescence of SiO2@CdS nanocomposites for sensitive detection of TATA-binding protein. Chem Commun 48(51):6429–6431

    Article  CAS  Google Scholar 

  14. Li NL, Jia LP, Ma RN, Jia WL, Lu YY, Shi SS, Wang HS (2016) A novel sandwiched electrochemiluminescence immunosensor for the detection of carcinoembryonic antigen based on carbon quantum dots and signal amplification. Biosens Bioelectron 89:453–460

    Article  Google Scholar 

  15. Fang L, Deng W, Yan Z, Ge S, Yu J, Song X (2014) Application of ZnO quantum dots dotted carbon nanotube for sensitive electrochemiluminescence immunoassay based on simply electrochemical reduced Pt/au alloy and a disposable device. Anal Chim Acta 818:46–53

    Article  Google Scholar 

  16. Zhou H, Ning G, Li T, Cao Y, Zeng S, Lei Z, Guo Z (2012) The sandwich-type electrochemiluminescence immunosensor for α-fetoprotein based on enrichment by Fe3O4-au magnetic nano probes and signal amplification by CdS-au composite nanoparticles labeled anti-AFP. Anal Chim Acta 746:107

    Article  CAS  Google Scholar 

  17. Qiang W, Li W, Li X, Chen X, Xu D (2014) Bioinspired polydopamine nanospheres: a superquencher for fluorescence sensing of biomolecules. Chem Sci 5(8):3018–3024

    Article  CAS  Google Scholar 

  18. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430

    Article  CAS  Google Scholar 

  19. Cui J, Yan Y, Such GK, Liang K, Ochs CJ, Postma A, Caruso F (2012) Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules 13(8):2225

    Article  CAS  Google Scholar 

  20. Ye Q, Zhou F, Liu W (2011) ChemInform abstract: bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40(7):4244

    Article  CAS  Google Scholar 

  21. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2013) Perspectives on poly(dopamine). Chem Sci 4(10):3798–3802

    Article  Google Scholar 

  22. Liu Y, Zhao Y, Zhu Z, Xing Z, Ma H, Wei Q (2017) Ultrasensitive immunosensor for prostate specific antigen using biomimetic polydopamine nanospheres as an electrochemiluminescence superquencher and antibody carriers. Anal Chim Acta 963:17–23

    Article  CAS  Google Scholar 

  23. Li L, Nurunnabi N, Lee YK, Huh KM (2013) GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J Control Release Soc 171(2):241

    Article  CAS  Google Scholar 

  24. Deng S, Ju H (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138(1):43–61

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  26. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50(12):4738–4743

    Article  CAS  Google Scholar 

  27. Yan J, Yang L, Lin MF, Ma J, Lu X, Lee PS (2013) Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small 9(4):596–603

    Article  CAS  Google Scholar 

  28. Nan Z, Weiguang M, Dongxue H, Lingnan W, Tongshun W, Li N (2015) The fluorescence detection of glutathione by •OH radicals' elimination with catalyst of MoS2/rGO under full spectrum visible light irradiation. Talanta 144:551–558

  29. Teng X, Yang H (2009) Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. Journal of the American Chemical Society 125 (47):14559–14563

  30. Sun Y, Ren Q, Liu B, Qin Y, Zhao S (2016) Enzyme-free and sensitive electrochemical determination of the FLT3 gene based on a dual signal amplified strategy: controlled nanomaterial multilayers and a target-catalyzed hairpin assembly. Biosens Bioelectron 78:7–13

    Article  CAS  Google Scholar 

  31. Su Z, Xu X, Xu H, Zhang Y, Li C, Ma Y, Song D, Xie Q (2017) Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim Acta 184(6):1677–1682

    Article  CAS  Google Scholar 

  32. Sun Y, Wang Y, Li J, Ding C, Lin Y, Sun W, Luo C (2017) An ultrasensitive chemiluminescence aptasensor for thrombin detection based on iron porphyrin catalyzing luminescence desorbed from chitosan modified magnetic oxide graphene composite. Talanta 174:809

    Article  CAS  Google Scholar 

Download references


This study was financially supported by the National Natural Science Foundation of China (21675063), the Science and Technology Planning Project of Higher Education of Shandong Province (J16LC23) and Q. Wei thanks the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937) and UJN.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hongmin Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material


(DOCX 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhao, Y., Fan, Q. et al. Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Microchim Acta 185, 85 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: