Advertisement

Microchimica Acta

, 185:21 | Cite as

Selection of DNA aptamers against Mycobacterium tuberculosis Ag85A, and its application in a graphene oxide-based fluorometric assay

  • Najmeh Ansari
  • Kiarash Ghazvini
  • Mohammad Ramezani
  • Mahin Shahdordizadeh
  • Rezvan Yazdian-Robati
  • Khalil AbnousEmail author
  • Seyed Mohammad TaghdisiEmail author
Original Paper

Abstract

The Mycobacterium Ag85 complex is the major secretory protein of M. tuberculosis. It is a potential marker for early diagnosis of tuberculosis (TB). The authors have identified specific aptamers for Ag85A (FbpA) via protein SELEX using magnetic beads. After twelve rounds of selection, two aptamers (Apt8 and Apt22) were chosen from different groups, and their binding constants were determined by flow cytometry. Apt22 (labeled with Atto 647N) binds to FbpA with high affinity (Kd = 63 nM) and specificity. A rapid, sensitive, and low-cost fluorescent assay was designed based on the use of Apt22 and graphene oxide, with a limit of detection of 1.5 nM and an analytical range from 5 to 200 nM of FbpA.
Graphical abstract

Schematic illustration of graphene oxide-based aptasensor for fluorometric determination of FbpA.

Keywords

SELEX Serum Fluorescent assay Limit of detection Secretory protein Quenching 

Notes

Acknowledgements

Financial support of this study was provided by Mashhad University of Medical Sciences. This report has been extracted from the Ph.D. thesis of Najmeh Ansari.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2550_MOESM1_ESM.doc (302 kb)
ESM 1 (DOC 302 kb)

References

  1. 1.
    Zumla A, George A, Sharma V, Herbert RHN, of Ilton BM, Oxley A, Oliver M (2015) The WHO 2014 global tuberculosis report—further to go. Lancet Glob Health 3(1):e10–e12CrossRefGoogle Scholar
  2. 2.
    Wells CD, Cegielski JP, Nelson LJ, Laserson KF, Holtz TH, Finlay A, Castro KG, Weyer K (2007) HIV infection and multidrug-resistant tuberculosis—the perfect storm. Journal of infectious diseases 196 (supplement 1):S86-S107Google Scholar
  3. 3.
    Gupta S, Prasad V, Bairy I, Muralidharan S (2009) Comparative evaluation of two cold staining methods with the Ziehl-Neelsen method for the diagnosis of tuberculosis. Southeast Asian J Trop Med Public Health 40(4):765Google Scholar
  4. 4.
    Steingart KR, Ramsay A, Pai M (2007) Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev Anti-Infect Ther 5(3):327–331CrossRefGoogle Scholar
  5. 5.
    Kim J, Lee J, Lee K-I, Park TJ, Kim H-J, Lee J (2013) Rapid monitoring of CFP-10 during culture of mycobacterium tuberculosis by using a magnetophoretic immunoassay. Sensors Actuators B Chem 177:327–333CrossRefGoogle Scholar
  6. 6.
    Haldar S, Bose M, Chakrabarti P, Daginawala HF, Harinath BC, Kashyap RS, Kulkarni S, Majumdar A, Prasad HK, Rodrigues C, Srivastava R, Taori GM, Varma-Basil M, Tyagi JS (2011) Improved laboratory diagnosis of tuberculosis - the Indian experience. Tuberculosis 91(5):414–426.  https://doi.org/10.1016/j.tube.2011.06.003 CrossRefGoogle Scholar
  7. 7.
    Woods GL (2001) Molecular techniques in mycobacterial detection. Archives of pathology and. Lab Med 125(1):122–126Google Scholar
  8. 8.
    Shen G-H, Chiou C-S, S-T H, K-M W, Chen J-H (2011) Rapid identification of the mycobacterium tuberculosis complex by combining the ESAT-6/CFP-10 immunochromatographic assay and smear morphology. J Clin Microbiol 49(3):902–907CrossRefGoogle Scholar
  9. 9.
    Hong SC, Chen H, Lee J, Park H-K, Kim YS, Shin H-C, Kim C-M, Park TJ, Lee SJ, Koh K (2011) Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sensors Actuators B Chem 156(1):271–275CrossRefGoogle Scholar
  10. 10.
    Bekmurzayeva A, Sypabekova M, Kanayeva D (2013) Tuberculosis diagnosis using immunodominant, secreted antigens of mycobacterium tuberculosis. Tuberculosis 93(4):381–388CrossRefGoogle Scholar
  11. 11.
    Wiker HG, Harboe M (1992) The antigen 85 complex: a major secretion product of mycobacterium tuberculosis. Microbiol Rev 56(4):648–661Google Scholar
  12. 12.
    Kashyap RS, Rajan AN, Ramteke SS, Agrawal VS, Kelkar SS, Purohit HJ, Taori GM, Daginawala HF (2007) Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of antigen 85 complex: a prospective cohort study. BMC Infect Dis 7(1):74CrossRefGoogle Scholar
  13. 13.
    Bentley-Hibbert SI, Quan X, Newman T, Huygen K, Godfrey HP (1999) Pathophysiology of antigen 85 in patients with active tuberculosis: antigen 85 circulates as complexes with fibronectin and immunoglobulin G. Infect Immun 67(2):581–588Google Scholar
  14. 14.
    Kashyap RS, Dobos KM, Belisle JT, Purohit HJ, Chandak NH, Taori GM, Daginawala HF (2005) Demonstration of components of antigen 85 complex in cerebrospinal fluid of tuberculous meningitis patients. Clin Diagn Lab Immunol 12(6):752–758Google Scholar
  15. 15.
    Harth G, Lee B-Y, Wang J, Clemens DL, Horwitz MA (1996) Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of mycobacterium tuberculosis. Infect Immun 64(8):3038–3047Google Scholar
  16. 16.
    Phunpae P, Chanwong S, Tayapiwatana C, Apiratmateekul N, Makeudom A, Kasinrerk W (2014) Rapid diagnosis of tuberculosis by identification of antigen 85 in mycobacterial culture system. Diagn Microbiol Infect Dis 78(3):242–248CrossRefGoogle Scholar
  17. 17.
    Saengdee P, Chaisriratanakul W, Bunjongpru W, Sripumkhai W, Srisuwan A, Hruanun C, Poyai A, Phunpae P, Pata S, Jeamsaksiri W (2016) A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis. Analyst 141(20):5767–5775CrossRefGoogle Scholar
  18. 18.
    Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491.  https://doi.org/10.1007/s00604-013-1156-7 CrossRefGoogle Scholar
  19. 19.
    Lv Z, Liu J, Bai W, Yang S, Chen A (2015) A simple and sensitive label-free fluorescent approach for protein detection based on a Perylene probe and aptamer. Biosens Bioelectron 64:530–534CrossRefGoogle Scholar
  20. 20.
    Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens Bioelectron 68:149–155CrossRefGoogle Scholar
  21. 21.
    He F, Xiong Y, Liu J, Tong F, Yan D (2016) Construction of au-IDE/CFP10-ESAT6 aptamer/DNA-AuNPs MSPQC for rapid detection of mycobacterium tuberculosis. Biosens Bioelectron 77:799–804CrossRefGoogle Scholar
  22. 22.
    Thakur H, Kaur N, Sabherwal P, Sareen D, Prabhakar N (2017) Aptamer based voltammetric biosensor for the detection of mycobacterium tuberculosis antigen MPT64. Microchim Acta 184(7):1915–1922.  https://doi.org/10.1007/s00604-017-2174-7 CrossRefGoogle Scholar
  23. 23.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924CrossRefGoogle Scholar
  24. 24.
    Ji L, Qian Y, Wu P, Zhang H, Cai C (2015) Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay. Anal Chim Acta 869:74–80CrossRefGoogle Scholar
  25. 25.
    Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16CrossRefGoogle Scholar
  26. 26.
    Mayer G, Ahmed M-SL, Dolf A, Endl E, Knolle PA, Famulok M (2010) Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures. Nat Protoc 5(12):1993–2004CrossRefGoogle Scholar
  27. 27.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefGoogle Scholar
  28. 28.
    Bai Y, Feng F, Zhao L, Chen Z, Wang H, Duan Y (2014) A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139(8):1843–1846CrossRefGoogle Scholar
  29. 29.
    Bahreyni A, Yazdian-Robati R, Hashemitabar S, Ramezani M, Ramezani P, Abnous K, Taghdisi SM (2017) A new chemotherapy agent-free theranostic system composed of graphene oxide nano-complex and aptamers for treatment of cancer cells. Int J Pharm 526(1):391–399.  https://doi.org/10.1016/j.ijpharm.2017.05.014 CrossRefGoogle Scholar
  30. 30.
    Rafati A, Gill P (2015) Microfluidic method for rapid turbidimetric detection of the DNA of mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim Acta 182(3–4):523–530.  https://doi.org/10.1007/s00604-014-1354-y CrossRefGoogle Scholar
  31. 31.
    Chen Y, Li Y, Yang Y, Wu F, Cao J, Bai L (2017) A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for mycobacterium tuberculosis. Microchim Acta 184(6):1801–1808.  https://doi.org/10.1007/s00604-017-2184-5 CrossRefGoogle Scholar
  32. 32.
    Gopinath SCB, Perumal V, Kumaresan R, Lakshmipriya T, Rajintraprasad H, Rao BS, Arshad MKM, Chen Y, Kotani N, Hashim U (2016) Nanogapped impedimetric immunosensor for the detection of 16Â kDa heat shock protein against mycobacterium tuberculosis. Microchim Acta 183(10):2697–2703.  https://doi.org/10.1007/s00604-016-1911-7 CrossRefGoogle Scholar
  33. 33.
    Saengdee P, Chaisriratanakul W, Bunjongpru W, Sripumkhai W, Srisuwan A, Hruanun C, Poyai A, Phunpae P, Pata S, Jeamsaksiri W, Kasinreak W, Promptmas C (2016) A silicon nitride ISFET based immunosensor for Ag85B detection of tuberculosis. Analyst 141(20):5767–5775.  https://doi.org/10.1039/C6AN00568C CrossRefGoogle Scholar
  34. 34.
    Mukundan H, Kumar S, Price DN, Ray SM, Lee Y-J, Min S, Eum S, Kubicek-Sutherland J, Resnick JM, Grace WK (2012) Rapid detection of mycobacterium tuberculosis biomarkers in a sandwich immunoassay format using a waveguide-based optical biosensor. Tuberculosis 92(5):407–416CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Microbiology and Virology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  2. 2.Antimicrobial Resistance Research Center, Buali Research Institute, Department of Microbiology and Virology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
  3. 3.Nanotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Department of Pharmaceutical Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
  5. 5.Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
  6. 6.Targeted Drug Delivery Research CenterMashhad University of Medical SciencesMashhadIran

Personalised recommendations