Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging

Abstract

The paper describes a droplet-based microfluidic method for phenotypic-based antimicrobial susceptibility testing (AST). In particular, this micro-droplet-based phenotypic assay evaluates susceptibility of different bacterial strains towards antibiotics by tracking effects on individual bacterial cells, including changes in bacterial cell number and morphology. The platform was validated by applying the method to test the responses of E. coli ATCC 25922 and 6937 (a clinical isolate), in spiked urine samples at a concentration of 5 × 104 cfu mL−1, to the antibiotics ceftazidime and levofloxacin. Both E. coli strains showed dose-dependent inhibition of bacterial replication and morphological alteration. These correlated well with minimal inhibitory concentrations determined by the reference broth microdilution method. Discrete bacterial divisions and morphological changes were observed within 20 min of on-chip incubation, demonstrating performance of rapid AST directly on urine samples. As proof-of-concept, specific bead-based biosensors were tested for capture and detection of E. coli for on-bead proliferation. The method has the attractive feature of allowing the detection of at least one bacterium per bead in less than 30 min. It can potentially be used to isolate a specific bacterial strain directly from patient urine samples for AST monitoring.

(A) Schematic of the droplet microfluidic chip for bacterial detection and Antibiotic Susceptibility Testing (AST); (B) Time lapse proliferation images of green fluorescent protein expressing E. coli in droplets. (C) Bacterial proliferation on the bead-based sensor.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    CAS  Article  Google Scholar 

  2. 2.

    World Health Organization (WHO). Antimicrobial resistance: global report on surveillance (2014) ISBN: 978 92 4 156474 8

  3. 3.

    Barber AE, Norton JP, Spivak AM, Mulvey MA (2013) Urinary tract infections: current and emerging management strategies. Clin Infect Dis 57(5):719–724

    Article  Google Scholar 

  4. 4.

    Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183(Supplement 1):S1–S4

    Article  Google Scholar 

  5. 5.

    Aguiar JP, Da Costa FA, Silva PC (2015) Evaluation of Empirical Antibiotic Therapy for the Treatment of Community-Acquired Urinary Tract Infections (CA-UTI). Int Arch Clin Pharmacol 1:002

    Article  Google Scholar 

  6. 6.

    Walker E, Lyman A, Gupta K, Mahoney MV, Snyder GM, Hirsch EB (2016) Clinical management of an increasing threat: outpatient urinary tract infections due to multidrug-resistant uropathogens. Clin Infect Dis 63(7):960–965

    Article  Google Scholar 

  7. 7.

    Brennan-Krohn T, Smith KP, Kirby JE (2017) The poisoned well: enhancing the predictive value of antimicrobial susceptibility testing in the era of multidrug resistance. J Clin Microbiol 55:2304–2308

    Article  Google Scholar 

  8. 8.

    Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    CAS  Article  Google Scholar 

  9. 9.

    CLSI (2009) Clinical and Laboratory Standards Institute (CLSI) performance standards for antimicrobial disk diffusion susceptibility tests 19th ed. approved standard. Wayne PA. Clinical and Laboratory Standards Institute document M100. S19–29

  10. 10.

    Schoepp NG, Khorosheva EM, Schlappi TS, Curtis MS, Humphries RM, Hindler JA, Ismagilov RF (2016) Digital Quantification of DNA Replication and Chromosome Segregation Enables Determination of Antimicrobial Susceptibility after only 15 Minutes of Antibiotic Exposure. Angew Chem 128(33):9709–9713

    Article  Google Scholar 

  11. 11.

    Mezger A, Gullberg E, Göransson J, Zorzet A, Herthnek D, Tano E, Nilsson M, Andersson DI (2015) A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol 53(2):425–432

    CAS  Article  Google Scholar 

  12. 12.

    Saint-Ruf, C., Crussard, S., Franceschi, C., Orenga, S., Ouattara, J., Ramjeet, M., Surre, J. and Matic, I., 2016. Antibiotic susceptibility testing of the Gram-Negative bacteria based on flow cytometry. Front Microbiol, 7

  13. 13.

    Zboromyrska Y, Rubio E, Alejo I, Vergara A, Mons A, Campo I, Bosch J, Marco F, Vila J (2016) Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin Microbiol Infect 22(6):561–5e1

    Article  Google Scholar 

  14. 14.

    Hrabák J, Chudáčková E, Walková R (2013) Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbio Rev 26(1):103–114

    Article  Google Scholar 

  15. 15.

    Liu CY, Han YY, Shih PH, Lian WN, Wang HH, Lin CH, Hsueh PR, Wang JK, Wang YL (2016) Rapid bacterial antibiotic susceptibility test based on simple surface-enhanced Raman spectroscopic biomarkers. Sci Rep 6:23375

    CAS  Article  Google Scholar 

  16. 16.

    Tang Y, Zhen L, Liu J, Wu J (2013) Rapid antibiotic susceptibility testing in a microfluidic pH sensor. Anal Chem 85(5):2787–2794

    CAS  Article  Google Scholar 

  17. 17.

    Price CS, Kon SE, Metzger S (2014) Rapid antibiotic susceptibility phenotypic characterization of Staphylococcus aureus using automated microscopy of small numbers of cells. J Microbiol Methods 98:50–58

    CAS  Article  Google Scholar 

  18. 18.

    Choi J, Yoo J, Lee M, Kim EG, Lee JS, Lee S, Joo S, Song SH, Kim EC, Lee JC, Kim HC (2014) A rapid antimicrobial susceptibility test based on single-cell morphological analysis. Sci Transl Med 6(267):267ra174

    Article  Google Scholar 

  19. 19.

    Churski K, Kaminski TS, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel DB, Garstecki P (2012) Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab Chip 12(9):1629–1637

    CAS  Article  Google Scholar 

  20. 20.

    Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, Jain N, Pan M, Deighan P, Rubin EJ (2014) Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. PNAS 111:1132–1137

    CAS  Article  Google Scholar 

  21. 21.

    Kang DK, Ali MM, Zhang K, Huang SS, Peterson E, Digman MA, Gratton E, Zhao W (2014) Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat Commun 5:5427

    CAS  Article  Google Scholar 

  22. 22.

    Choi K, Ng AH, Fobel R, Wheeler AR (2012) Digital microfluidics. Anal Chem 5:413–440

    CAS  Google Scholar 

  23. 23.

    Mohan R, Mukherjee A, Sevgen SE, Sanpitakseree C, Lee J, Schroeder CM, Kenis PJ (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125

    CAS  Article  Google Scholar 

  24. 24.

    Pulido MR, García-Quintanilla M, Martín-Peña R, Cisneros JM, McConnell MJ (2013) Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother 68(12):2710–2717

    CAS  Article  Google Scholar 

  25. 25.

    Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors 9(6):4804–4823

    CAS  Article  Google Scholar 

  26. 26.

    Lui C, Cady NC, Batt CA (2009) Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 9(5):3713–3744

    CAS  Article  Google Scholar 

  27. 27.

    Golberg A, Linshiz G, Kravets I, Stawski N, Hillson NJ, Yarmush ML, Marks RS, Konry T (2014) Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PLoS One 9(1):e86341

    Article  Google Scholar 

  28. 28.

    Sarkar S, Cohen N, Sabhachandani P, Konry T (2015) Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors. Lab Chip 15(23):4441–4450

    CAS  Article  Google Scholar 

  29. 29.

    Wilson ML, Gaido L (2004) Laboratory diagnosis of urinary tract infections in adult patients. Clin Infect Dis 38(8):1150–1158

    Article  Google Scholar 

  30. 30.

    CLSI (2016) Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; twenty-sixth informational supplement. Wayne PA. Clinical and Laboratory Standards Institute document M100, S26

  31. 31.

    Hayes MV, Orr DC (1983) Mode of action of ceftazidime: affinity for the penicillin-binding proteins of Escherichia coli K12, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 12(2):119–126

    CAS  Article  Google Scholar 

  32. 32.

    Buijs J, Dofferhoff ASM, Mouton JW, Wagenvoort JHT, Van Der Meer JWM (2008) Concentration dependency of β-lactam induced filament formation in Gram-negative bacteria. Clin Microbiol Infect 14(4):344–349

    CAS  Article  Google Scholar 

  33. 33.

    Davis R, Bryson HM (1994) Levofloxacin. Drugs 47(4):677–700

    CAS  Article  Google Scholar 

  34. 34.

    Justice SS, Hunstad DA, Cegelski L, Hultgren SJ (2008) Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6(2):162–168

    CAS  Article  Google Scholar 

  35. 35.

    Dörr T, Lewis K, Vulić M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5(12):e1000760

    Article  Google Scholar 

  36. 36.

    Xu S (2012) Electromechanical biosensors for pathogen detection. Microchim Acta 178(3–4):245–260

    CAS  Article  Google Scholar 

  37. 37.

    Liebsch C, Rödiger S, Böhm A, Nitschke J, Weinreich J, Fruth A, Roggenbuck D, Lehmann W, Schedler U, Juretzek T, Schierack P (2017) Solid-phase microbead array for multiplex O-serotyping of Escherichia coli. Microchim Acta 184(5):1405–1415

    CAS  Article  Google Scholar 

  38. 38.

    Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178(1–2):7–28

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Abhinav Gupta, Sneha Varghese and Sai Mynampati at Northeastern University for their assistance in fabrication of microfluidic devices. The authors would like to thank Zhi Shen Lin (Northeastern University) for his assistance in bacterial cell culture. The authors would also like to acknowledge the CIMIT grant awarded to Dr. Konry (CIMIT/POCT/NIH/NIBIB/16111315).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tania Konry.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 586 kb)

ESM 2

(AVI 1817 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabhachandani, P., Sarkar, S., Zucchi, P.C. et al. Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Microchim Acta 184, 4619–4628 (2017). https://doi.org/10.1007/s00604-017-2492-9

Download citation

Keywords

  • Droplet microfluidics
  • Bioassay development
  • Biosensors
  • Urinary tract infections
  • E. coli
  • Antibiotic susceptibility
  • Fluorescence microscopy