Microchimica Acta

, Volume 184, Issue 11, pp 4401–4408 | Cite as

Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher

  • K. Yugender Goud
  • Akhtar Hayat
  • M. Satyanarayana
  • V. Sunil Kumar
  • Gaëlle Catanante
  • K. Vengatajalabathy Gobi
  • Jean Louis MartyEmail author
Original Paper


A versatile and cost-effective aptamer-based fluorescence quenching assay is described for the detection of the mycotoxin zearalenone (ZEN). Exfoliated functional graphene oxide (FGO) of high water-dispersibility is adopted as an effective fluorescence quencher of the fluorescence of FAM. Quenching properties of graphite, graphene oxide (GO) and FGO were investigated, and FGO is found to be the most efficient quencher. FGO therefore was used in an aptamer-based detection format that allows ZEN to be determined in the concentration range of 0.5 to 64 ng·mL−1 with a limit of detection of 0.5 ng·mL−1. The aptamer assay has good repeatability and reproducibility (n ≥ 4). Selectivity of the aptamer assay against a set of possible interferents is substantiated. This aptasensing assay was successfully applied to the determination of ZEN in (spiked) alcoholic beverage samples, beer and wine, and recovery values in the range of 87 to 96% were obtained for the determination of ZEN at levels as low as 1–16 ng mL−1.

Graphical abstract

Comparison of fluorescence quenching efficiency of graphite, graphene oxide (GO) and functional graphene oxide (FGO). Fluorophore: Fluorescein amidite (FAM).


Zearalenone Optical aptasensor Fluorescein amidite (FAM) Functional graphene oxide Aptamer Fluorescence quenching Beer Wine Alcoholic beverages 



This research work was supported by NATO SPS program, project NUKR.SFPP 984637. K. Yugender Goud would like to thank EUPHRATES Program for ERASMUS Mundus Doctoral Fellowship.

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Liu N, Nie D, Zhao Z et al (2015) Ultrasensitive immunoassays based on biotin–streptavidin amplified system for quantitative determination of family zearalenones. Food Control 57:202–209. CrossRefGoogle Scholar
  2. 2.
    Wang Y, Li Z, Wang J et al (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212. CrossRefGoogle Scholar
  3. 3.
    Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon N Y 84:519–550. CrossRefGoogle Scholar
  4. 4.
    Song Y, Luo Y, Zhu C et al (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212. CrossRefGoogle Scholar
  5. 5.
    Wu S, He Q, Tan C et al (2013) Graphene-based electrochemical sensors. Small 9:1160–1172. CrossRefGoogle Scholar
  6. 6.
    Wang L, Zhu J, Han L et al (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6:6659–6666. CrossRefGoogle Scholar
  7. 7.
    Dong H, Gao W, Yan F et al (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82:5511–5517. CrossRefGoogle Scholar
  8. 8.
    Lin W, Tian B, Zhuang P et al (2016) Graphene-based fluorescence-quenching-related Fermi level elevation and electron-concentration surge. Nano Lett 16:5737–5741. CrossRefGoogle Scholar
  9. 9.
    Lu C, Yang H, Zhu C et al (2009) A graphene platform for sensing biomolecules. Angew Chem 121:4879–4881. CrossRefGoogle Scholar
  10. 10.
    Xing X, Liu X, Yue-He, et al (2012) Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate. Biosens Bioelectron 37:61–67. doi:
  11. 11.
    Bai Y, Feng F, Zhao L et al (2014) A turn-on fluorescent aptasensor for adenosine detection based on split aptamers and graphene oxide. Analyst 139:1843. CrossRefGoogle Scholar
  12. 12.
    Cao L, Cheng L, Zhang Z et al (2012) Visual and high-throughput detection of cancer cells using a graphene oxide-based FRET aptasensing microfluidic chip. Lab Chip 12:4864. CrossRefGoogle Scholar
  13. 13.
    Kushwaha HS, Sao R, Vaish R (2014) Label free selective detection of estriol using graphene oxide-based fluorescence sensor. J Appl Phys 116:34701. CrossRefGoogle Scholar
  14. 14.
    He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nano 4:2054. Google Scholar
  15. 15.
    Song Y, Li W, Duan Y et al (2014) Nicking enzyme-assisted biosensor for salmonella enteritidis detection based on fluorescence resonance energy transfer. Biosens Bioelectron 55:400–404. CrossRefGoogle Scholar
  16. 16.
    Gao L, Li Q, Li R et al (2015) Highly sensitive detection for proteins using graphene oxide-aptamer based sensors. Nano 7:10903–10907. Google Scholar
  17. 17.
    Chang H, Tang L, Wang Y et al (2010) Graphene fluorescence resonance energy transfer Aptasensor for the thrombin detection. Anal Chem 82:2341–2346. CrossRefGoogle Scholar
  18. 18.
    Wu S, Duan N, Ma X et al (2012) Multiplexed fluorescence resonance energy transfer Aptasensor between Upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84:6263–6270. CrossRefGoogle Scholar
  19. 19.
    Zhang C, Yuan Y, Zhang S et al (2011) Biosensing platform based on fluorescence resonance energy transfer from Upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50:6851–6854. CrossRefGoogle Scholar
  20. 20.
    Zeng X, Ma S, Bao J et al (2013) Using graphene-based Plasmonic nanocomposites to quench energy from quantum dots for signal-on Photoelectrochemical Aptasensing. Anal Chem 85:11720–11724. CrossRefGoogle Scholar
  21. 21.
    Liu C, Wang Z, Jia H, Li Z (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47:4661. CrossRefGoogle Scholar
  22. 22.
    Yu Y, Cao Q, Zhou M, Cui H (2013) A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer. Biosens Bioelectron 43:137–142. CrossRefGoogle Scholar
  23. 23.
    Lu Z, Chen X, Wang Y et al (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578. CrossRefGoogle Scholar
  24. 24.
    Hu X, Mu L, Wen J, Zhou Q (2012) Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon.
  25. 25.
    Cai R, Rao W, Zhang Z et al (2014) An imprinted electrochemical sensor for bisphenol a determination based on electrodeposition of a graphene and ag nanoparticle modified carbon electrode. Anal Methods 6:1590. CrossRefGoogle Scholar
  26. 26.
    Murphy CB, Zhang Y, Troxler T et al (2004) Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer Chemosensors. J Phys Chem B 108:1537–1543. CrossRefGoogle Scholar
  27. 27.
    Zu F, Yan F, Bai Z et al (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. CrossRefGoogle Scholar
  28. 28.
    Goud KY, Hayat A, Catanante G, Satyanarayana M, Gobi KV, Marty JL (2017) An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochim Acta 244:96–103. CrossRefGoogle Scholar
  29. 29.
    Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. CrossRefGoogle Scholar
  30. 30.
    Sheng L, Ren J, Miao Y et al (2011) PVP-coated graphene oxide for selective determination of ochratoxin a via quenching fluorescence of free aptamer. Biosens Bioelectron 26:3494–3499. CrossRefGoogle Scholar
  31. 31.
    Fang G, Fan C, Liu H et al (2014) A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples. RSC Adv 4:2764–2771. CrossRefGoogle Scholar
  32. 32.
    Chen X, Huang Y, Duan N et al (2013) Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem 405:6573–6581. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • K. Yugender Goud
    • 1
    • 2
  • Akhtar Hayat
    • 1
    • 3
  • M. Satyanarayana
    • 2
  • V. Sunil Kumar
    • 2
  • Gaëlle Catanante
    • 1
  • K. Vengatajalabathy Gobi
    • 2
  • Jean Louis Marty
    • 1
    Email author
  1. 1.BAE LaboratoryUniversité de Perpignan Via DomitiaPerpignanFrance
  2. 2.Department of ChemistryNational Institute of TechnologyWarangalIndia
  3. 3.Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS Institute of Information Technology (CIIT)LahorePakistan

Personalised recommendations