Advertisement

Microchimica Acta

, Volume 184, Issue 11, pp 4545–4552 | Cite as

Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device

  • Xuan Weng
  • Suresh NeethirajanEmail author
Original Paper

Abstract

The authors describe a rapid and highly sensitive point-of-care device for rapid determination of noroviruses, a leading cause of acute gastroenteritis. The assay is based on the use of a norovirus-specific aptamer labeled with 6-carboxyfluorescein, and of multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO). The fluorescence of the 6-FAM labeled aptamer is quenched by MWCNT or GO. In the presence of norovirus, fluorescence is recovered due to the release of the labeled aptamer from MWCNT or GO. An easy-to-make paper-based microfluidic platform was developed using a nitrocellulose membrane. The quantitation of norovirus was successfully performed. The linear range extends from 13 ng·mL−1 to 13 μg·mL−1 of norovirus. The detection limits are 4.4 ng·mL−1 and 3.3 ng·mL−1, respectively, when using MWCNT or GO. The device is simple and cost-effective, and holds the potential of rapid in-situ visual determination of noroviruses with remarkable sensitivity and specificity. Hence, it provides a new method for early identification of norovirus and a tool for early intervention when preventing the spread of an outbreak.

Graphical Abstract

Keywords

Biosensor Aptamer Norovirus Paper-based microfluidic device Nitrocellulose membrane Multi-walled carbon nanotubes Graphene oxide 

Abbreviations

6-FAM

6-carboxyfluorescein

ELISA

enzyme-linked immunosorbent assay

FRET

fluorescence resonance energy transfer

GO

graphene oxide

LoD

limit of detection

LFAs

lateral-flow assays

MWCNT

multi-walled carbon nanotubes

POCT

point-of-care testing

RT-PCR

reverse transcription polymerase chain reaction

Notes

Acknowledgements

The authors sincerely thank the Natural Sciences and Engineering Research Council of Canada (400705) for funding this study.

Author Contribution

XW and SN designed the study; XW performed experiments, acquired and analyzed data, XW and SN drafted and edited the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2467_MOESM1_ESM.docx (741 kb)
ESM 1 (DOCX 740 kb)

References

  1. 1.
    Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, Koopmans M, Lopman BA (2014) Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infec Dis 14(8):725–730CrossRefGoogle Scholar
  2. 2.
    Koo HL, Ajami N, Atmar RL, DuPont HL (2010) Noroviruses: the principal cause of foodborne disease worldwide. Discov Med 10(50):61Google Scholar
  3. 3.
    Glass RI, Parashar UD, Estes MK (2009) Norovirus gastroenteritis. N Engl J Med 361(18):1776–1785CrossRefGoogle Scholar
  4. 4.
    Jiang XI, Wang MI, Graham DY, Estes MK (1992) Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J Virol 66(11):6527–6532Google Scholar
  5. 5.
    Hayashi YU, Ando TA, Utagawa ET, Sekine SE, Okada SH, Yabuuchi K, Miki T, Ohashi M (1989) Western blot (immunoblot) assay of small, round-structured virus associated with an acute gastroenteritis outbreak in Tokyo. J Clin Microbiol 27(8):1728–1733Google Scholar
  6. 6.
    Vinjé J, Vennema H, Maunula L, von Bonsdorff CH, Hoehne M, Schreier E, Richards A, Green J, Brown D, Beard SS, Monroe SS (2003) International collaborative study to compare reverse transcriptase PCR assays for detection and genotyping of noroviruses. J Clin Microbiol 41(4):1423–1433CrossRefGoogle Scholar
  7. 7.
    Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sens Actuators B Chem 183:535–549CrossRefGoogle Scholar
  8. 8.
    Hong SA, Kwon J, Kim D, Yang S (2015) A rapid, sensitive and selective electrochemical biosensor with concanavalin A for the preemptive detection of norovirus. Biosens Bioelectron 64:338–344CrossRefGoogle Scholar
  9. 9.
    Hwang HJ, Ryu MY, Park CY, Ahn J, Park HG, Choi C, Ha SD, Park TJ, Park JP (2017) High sensitive and selective electrochemical biosensor: Label-free detection of human norovirus using affinity peptide as molecular binder. Biosens Bioelectron 87:164–170CrossRefGoogle Scholar
  10. 10.
    Ko SM, Kwon J, Vaidya B, Choi JS, Lee HM, Oh MJ, Bae HJ, Cho SY, Oh KS, Kim D (2014) Development of lectin-linked immunomagnetic separation for the detection of hepatitis A virus. Viruses 6(3):1037–1048CrossRefGoogle Scholar
  11. 11.
    Kim J, Adhikari M, Dhamane S, Hagström AE, Kourentzi K, Strych U, Willson RC, Conrad JC (2015) Detection of viruses by counting single fluorescent genetically biotinylated reporter immunophage using a lateral flow assay. ACS Appl Mater Interfaces 7(4):2891CrossRefGoogle Scholar
  12. 12.
    Doerflinger SY, Tabatabai J, Schnitzler P, Farah C, Rameil S, Sander P, Koromyslova A, Hansman GS (2016) Development of a nanobody-based lateral flow immunoassay for detection of human norovirus. mSphere 1(5):e00219–e00216CrossRefGoogle Scholar
  13. 13.
    Wiriyachaiporn N, Sirikett H, Maneeprakorn W, Dharakul T (2017) Carbon nanotag based visual detection of influenza A virus by a lateral flow immunoassay. Microchim Acta 184:1827–1835CrossRefGoogle Scholar
  14. 14.
    Wiriyachaiporn N, Maneeprakorn W, Apiwat C, Dharakul T (2015) Dual-layered and double-targeted nanogold based lateral flow immunoassay for influenza virus. Microchim Acta 182(1–2):85–93CrossRefGoogle Scholar
  15. 15.
    Hagström AE, Garvey G, Paterson AS, Dhamane S, Adhikari M, Estes MK, Strych U, Kourentzi K, Atmar RL, Willson RC (2015) Sensitive detection of norovirus using phage nanoparticle reporters in lateral-flow assay. PLoS One 10(5):e0126571CrossRefGoogle Scholar
  16. 16.
    Davaji B, Lee CH (2014) A paper-based calorimetric microfluidics platform for bio-chemical sensing. Biosens Bioelectron 59:120–126CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Zuo P, Ye BC (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19CrossRefGoogle Scholar
  18. 18.
    Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro-and nano-analytical devices: Fabrication, modification, detection and emerging applications. Microchim Acta 183(5):1521–1542CrossRefGoogle Scholar
  19. 19.
    Singh DK, Iyer PK, Giri PK (2012) Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes. Carbon 50(12):4495–4505CrossRefGoogle Scholar
  20. 20.
    Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12(1):612–631CrossRefGoogle Scholar
  21. 21.
    Alig I, Pötschke P, Lellinger D, Skipa T, Pegel S, Kasaliwal GR, Villmow T (2012) Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 53(1):4–28CrossRefGoogle Scholar
  22. 22.
    Huang PJ, Liu J (2012) DNA-length-dependent fluorescence signaling on graphene oxide surface. Small 8(7):977–983CrossRefGoogle Scholar
  23. 23.
    Lin B, Yu Y, Li R, Cao Y, Guo M (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators B Chem 229:100–109CrossRefGoogle Scholar
  24. 24.
    Li H, Tian J, Wang L, Zhang Y, Sun X (2011) Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. J Mater Chem 21(3):824–828CrossRefGoogle Scholar
  25. 25.
    Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346CrossRefGoogle Scholar
  26. 26.
    Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus LA (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9(9):e106805CrossRefGoogle Scholar
  27. 27.
    Mu X, Zhang L, Chang S, Cui W, Zheng Z (2014) Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Anal Chem 86(11):5338–5344CrossRefGoogle Scholar
  28. 28.
    Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89:123–135CrossRefGoogle Scholar
  29. 29.
    Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18(12):112–114Google Scholar
  30. 30.
    Neethirajan S, Ahmed SR, Chand R, Buozis J, Nagy É (2017) Recent advances in biosensor development for foodborne virus detection. Nano 1:272–295Google Scholar
  31. 31.
    Gupta N, Lainson JC, Belcher PE, Shen L, Mason HS, Johnston SA, Diehnelt CW (2017) Cross-reactive synbody affinity ligands for capturing diverse noroviruses. Anal Chem 89:7174–7181CrossRefGoogle Scholar
  32. 32.
    Todd EC (2016) Foodborne diseases: case Studies of outbreaks in the agri-food industries. CRC Press, (318–240)Google Scholar
  33. 33.
    Lowther JA, Gustar NE, Hartnell RE, Lees DN (2012) Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels. J Food Prot 75(2):389–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.BioNano Laboratory, School of EngineeringUniversity of GuelphGuelphCanada

Personalised recommendations