Skip to main content
Log in

Gold nanorod-based electrochemical sensing of small biomolecules: A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Gold nanorods (AuNRs) show high potential in electrochemical sensing owing to their excellent conductivity, electrocatalytic activity, selectivity and sensitivity. This review (with 99 refs.) summarizes the performance of AuNR-based electrochemical sensors based on the use of advanced nanocomposites. Following an introduction into the fields of biosensors and nanomaterials, the article summarizes the advantages and limitations of conventional analytical methods. A third section overviews the methods for preparation and characterization of AuNRs and nanocomposites including bimetallic nanorods, gold-metal oxide, gold-carbon nanotubes, gold-polymer, gold-graphene, gold-CNT and gold-enzymes conjugates. Their electrochemistry is treated next, with aspects related to the effects of rod size and shape, of thiol coatings on voltammetric signals, and on the behavior of 1-D AuNRs and respective arrays. Section 5 gives examples for non-enzymatic sensors for simple biomolecules, with subsections on sensors for hydrogen peroxide, nitric oxide, glucose, dopamine, NAD/NADH, cysteine, and some drugs. Section 6 covers enzyme-based sensors, with examples on sensors using peroxidases, oxidases and the like. The next sections cover DNA biosensors (such as for DNA biomarkers) and immunosensors, mainly for tumor markers. Possibilities for improving sensor performance are presented at the end of the review.

Pictorial representation of gold nanorods synthesis and electrochemical sensor applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Song S, Xu H, Fan C (2006) Potential diagnostic applications of biosensors: current and future directions. Int J Nanomedicine 1(4):433–440

    Article  CAS  Google Scholar 

  2. Wang J (1999) Sol–gel materials for electrochemical biosensors. Anal Chim Acta 399(1):21–27

    Article  CAS  Google Scholar 

  3. Singh P, Pandey SK, Singh J, Srivastava S, Sachan S, Singh SK (2016) Biomedical perspective of electrochemical Nanobiosensor. Nano-Micro Lett 8(3):193–203

    Article  CAS  Google Scholar 

  4. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM (2015) A gold Nanorods-based localized surface Plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 140:2540–2555

    Article  CAS  Google Scholar 

  5. Prasad BB, Singh R, Kumar A (2016) Gold nanorods vs. gold nanoparticles: application in electrochemical sensing of cytosine β-D-arabinoside using metal ion mediated molecularly imprinted polymer. RSC Adv 6:80679–80691

    Article  CAS  Google Scholar 

  6. Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  7. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem C 109:12663–12676

    Article  CAS  Google Scholar 

  8. Haberlen OD, Chung SC, Stener M, Rosch N (1997) From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Aun, n=6,…,147. J Chem Phys 106:5189

  9. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  CAS  Google Scholar 

  10. Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

    Article  CAS  Google Scholar 

  11. Wu H-Y, Chu H-C, Kuo T-J, Kuo C-L, Huang MH (2005) Seed-mediated synthesis of high aspect ratio gold Nanorods with nitric acid. Chem Mater 17:6447–6451

    Article  CAS  Google Scholar 

  12. Jia H, Fang C, Zhu X-M, Ruan Q, Wang Y-X J, Wang J (2015) Synthesis of absorption-dominant small gold Nanorods and their Plasmonic properties. Langmuir 31:7418–7426

    Article  CAS  Google Scholar 

  13. Pontifex GH, Zhang P, Wang Z, Haslett TL, AlMawlawi D, Moskovits M (1991) STM imaging of the surface of small metal particles formed in anodic oxide pores. J Phys Chem 95:9989–9993

    Article  CAS  Google Scholar 

  14. Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold Nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640

    Article  CAS  Google Scholar 

  15. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  CAS  Google Scholar 

  16. Lamprect G, Pichlmayer F, Schmid ER (1994) Determination of the authenticity of vanilla extracts by stable isotope ratio analysis and component analysis by HPLC. J Agric Food Chem 42:1722–1727

    Article  Google Scholar 

  17. Ni Y, Zhang G, Kokot S (2005) Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem 89:465–473

    Article  CAS  Google Scholar 

  18. Boyce MC, Haddad PR, Sostaric T (2003) Determination of flavour components in natural vanilla extracts and synthetic flavourings by mixed micellar electrokinetic capillary chromatography. Anal Chim Acta 485:179–186

    Article  CAS  Google Scholar 

  19. Sostaric T, Boyce MC, Spickett EE (2000) Analysis of the volatile components in vanilla extracts and flavorings by solid-phase microextraction and gas chromatography. J Agric Food Chem 48:5802–5807

    Article  CAS  Google Scholar 

  20. Peng H, Wang S, Zhang Z, Xiong H, Li J, Chen L, Li Y (2012) Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. J Agric Food Chem 60:1921–1928

    Article  CAS  Google Scholar 

  21. Yusoff N, Pandikumar A, Ramaraj R, Huang NM, Lim HN (2015) Gold nanoparticles based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114

    Article  CAS  Google Scholar 

  22. Pandikumar A, How GTS, Teo PS, Fatin SO, Jayabal S, Kamali KZ, Yusoff N, Asilah J, Ramaraj R, Abraham John S, Lim HN, Huang NM (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4:63296–63323

    Article  CAS  Google Scholar 

  23. Pandikumar A, How GTS, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA, Limbe HN, Huang NM (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4:63296

    Article  CAS  Google Scholar 

  24. Yu Y, Chang SS, Lee CL, Wang CRC (1997) Gold Nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  25. Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold Nanorods. Langmuir 15:701–709

    Article  CAS  Google Scholar 

  26. Vigderman L, Khanal BP, Eugene RZ (2012) Functional gold Nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841

    Article  CAS  Google Scholar 

  27. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393

    Article  CAS  Google Scholar 

  28. Zweifel DA, Wei A (2005) Sulfide-arrested growth of gold Nanorods. Chem Mater 17:4256–4261

    Article  CAS  Google Scholar 

  29. Dickson W, Evans PR, Wurtz GA, Hendren W, Atkinson R, Pollard RJ, Zayatz AV (2008) Towards nonlinear plasmonic devices based on metallic nanorods. J Microsc 229:415–420

    Article  CAS  Google Scholar 

  30. Van der Zande BMI, MBoehmer R, Fokkink LGJ, Schoenenberger C (2000) Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir 16:451–458

    Article  Google Scholar 

  31. Grand J, Kostcheev S, Bijeon JL, de la Chapelle ML, Adam PM, Rumyantseva A, Lerondel G, Royer P (2003) Optimization of SERS-active substrates for near-field Raman spectroscopy. Synth Met 139:621

    Article  CAS  Google Scholar 

  32. Cubukcu E, Kort EA, Crozier KB, Capasso F (2006) Plasmonic laser antenna. Appl Phys Lett 89:093120

    Article  Google Scholar 

  33. Taub N, Krichevski O, Markovich G (2003) Growth of gold Nanorods on surfaces. J Phys Chem B 107:11579–11582

    Article  CAS  Google Scholar 

  34. Wei Z, Mieszawska AJ, Zamborini FP (2004) Synthesis and manipulation of high aspect ratio gold Nanorods grown directly on surfaces. Langmuir 20:4322

    Article  CAS  Google Scholar 

  35. Liao H, Hafner JH (2004) Monitoring gold Nanorod synthesis on surfaces. J Phys Chem B 108:19276–19280

    Article  CAS  Google Scholar 

  36. Shopova SI, Blackledge CW, Rosenberg AT (2006) Gold nanorods grown from HgTe nanoparticles directly on various surfaces. Appl Phys Lett 89:023120

    Article  Google Scholar 

  37. Mieszawska AJ, Zamborini FP (2005) Gold Nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem Mater 17:3415–3420

    Article  CAS  Google Scholar 

  38. Xia H, Li L, Yin Z, Hou X, Zhu JJ (2015) Biobar-coded gold nanoparticles and DNAzyme-based dual signal amplification strategy for ultrasensitive detection of protein by Electrochemiluminescence. ACS Appl Mater Interfaces 7:696–703

    Article  CAS  Google Scholar 

  39. Liu J, He X, Wang K, He D, Wang Y, Mao Y, Shi H, Wen L (2015) A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex–hemin and gold nanoparticles. Biosens Bioelectron 70:54–60

    Article  CAS  Google Scholar 

  40. Chirea M, Cruz A, Pereira CM, Silva AF (2009) Size-dependent electrochemical properties of gold Nanorods. J Phys Chem C 113:13077–13087

    Article  CAS  Google Scholar 

  41. Chirea M, Garcia-Morales V, Manzanares JA, Pereira C, Gulaboski R, Silva FJ (2005) Electrochemical characterization of polyelectrolyte/gold nanoparticle multilayers self-assembled on gold electrodes. Phys Chem B 109:21808–21817

    Article  CAS  Google Scholar 

  42. Chirea M, Pereira CM, Silva F (2007) Catalytic effect of gold nanoparticles self-assembled in multilayered polyelectrolyte films. J Phys Chem C 111:9255–9266

    Article  CAS  Google Scholar 

  43. Chirea M, Borges J, Pereira CM, Silva AF (2010) Density-dependent electrochemical properties of vertically aligned gold Nanorods. J Phys Chem C 114:9478–9488

    Article  CAS  Google Scholar 

  44. Gooding JJ, Chou A, Liu JQ, Losic D, Shapter JG, Hibbert DB (2007) The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes. Electrochem Commun 9:1677–1683

    Article  CAS  Google Scholar 

  45. Chidsey CED (1991) Free energy and temperature dependence of electron transfer at the metal-electrolyte Interface. Science 251:919–922

    Article  CAS  Google Scholar 

  46. Lin CC, Juo TJ, Chen YJ, Chiou CH, Wang HW, Liu YL (2008) Enhanced cyclic voltammetry using 1-D gold nanorods synthesized via AAO template electrochemical deposition. Desalination 233:113–119

    Article  CAS  Google Scholar 

  47. Munshi AM, Ho D, Saunders M, Agarwal V, Raston CL, Iyer KS (2016) Influence of aspect ratio of magnetite coated gold nanorods in hydrogen peroxide sensing. Sensors Actuators B Chem 235:492–497

    Article  CAS  Google Scholar 

  48. Jayabal S, Ramaraj R (2013) Synthesis of core/shell au/ag nanorods embedded in functionalized silicate sol–gel matrix and their applications in electrochemical sensors. Electrochim Acta 88:51–58

    Article  CAS  Google Scholar 

  49. Xun F, Hongyan XL, Hao S, Xiaochun H, Song WW (2014) Highly accessible Pt nanodots homogeneously decorated on au nanorods surface for sensing. Anal Chim Acta 852:37–44

    Article  Google Scholar 

  50. Pang P, Yang Z, Xiao S, Xie J, Zhang Y, Gao Y (2014) Nonenzymatic amperometric determination of hydrogen peroxide by graphene and gold nanorods nanocomposite modified electrode. J Electroanal Chem 727:27–33

    Article  CAS  Google Scholar 

  51. Wang C, Zou X, Wang Q, Shi K, Tan J, Zhao X, Chaia Y, Yuan R (2014) A nitrite and hydrogen peroxide sensor based on Hb adsorbed on au nanorods and graphene oxide coated by polydopamine. Anal Methods 6:758

    Article  CAS  Google Scholar 

  52. Yang X, Wang Y, Liu Y, Jiang X (2013) A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim Acta 108:39–44

    Article  CAS  Google Scholar 

  53. Dang X, Hu H, Wang S, Hu S (2015) Nanomaterial-based electrochemical sensors for nitric oxide. Microchim Acta 182:455–467

    Article  CAS  Google Scholar 

  54. Vasilescu A, Gheorghiu M, Peteu S (2017) Nanomaterial-based electrochemical sensors and optical probes for detection and imaging of peroxynitrite: a review. Microchim Acta 184:649–676

    Article  CAS  Google Scholar 

  55. Jayabal S, Viswanathan P, Ramaraj R (2014) Reduced graphene oxide–gold nanorods composite material stabilized in silicate sol–gel matrix for nitric oxide sensor. RSC Adv 4:33541

    Article  CAS  Google Scholar 

  56. Marlinda AR, Pandikumar A, Jayabal S, Yusoff N, Suriani AB, Huang NM (2016) Voltammetric determination of nitric oxide using a glassy carbon electrode modified with a nanohybrid consisting of myoglobin, gold nanorods, and reduced graphene oxide. Microchim Acta 183:3077–3085

    Article  CAS  Google Scholar 

  57. Zhao Y, Fang X, Yan X, Zhang X, Kang Z, Zhang G, Zhang Y (2015) Nanorod arrays composed of zinc oxide modified with gold nanoparticles and glucose oxidase for enzymatic sensing of glucose. Microchim Acta 182(3–4):605–610

    Article  CAS  Google Scholar 

  58. Zhang C, Ni H, Chen R, Zhan W, Zhang B, Lei R, Zha Y (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182(9–10):1811–1818

    Article  CAS  Google Scholar 

  59. Tamer U, Seckin AI, Temur E, Torul H (2011) Fabrication of biosensor based on polyaniline/gold Nanorod composite. Int J Electrochem 2011:7

    Article  Google Scholar 

  60. Yingying L, Xiaoxia W, Xiang D, Zhipeng H, Haiqian Z (2010) Amperometric glucose biosensor based on gold nanorods and chitosan comodified au electrode. Rare Metals 29:238–242

    Article  Google Scholar 

  61. Ciftci H, Tamer U (2012) Functional gold nanorod particles on conducting polymer poly(3-octylthiophene) as non-enzymatic glucose sensor. React Funct Polym 72:127–132

    Article  CAS  Google Scholar 

  62. Ren X, Chen D, Meng X, Tang F, Du A, Zhang L (2009) Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. Colloids Surf B 72:188–192

    Article  CAS  Google Scholar 

  63. Hsu CW, JenWang G (2014) Highly sensitive glucose biosensor based on au–Ni coaxial nanorod array having high aspect ratio. Biosens Bioelectron 56:204–209

    Article  CAS  Google Scholar 

  64. Liu H, Chen D, Yang L, Ren X, Tang F, Ren J (2010) A study of the electron transfer and photothermal effect of gold nanorods on a glucose biosensor. Nanotechnology 21:185504

    Article  Google Scholar 

  65. Ahn M, Kim J (2012) Electrochemical behavior of dopamine and ascorbic acid at dendritic au rod surfaces: selective detection of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem 683:75–79

    Article  CAS  Google Scholar 

  66. Deng C, Chen J, Yang M, Nie Z, Si S (2011) Electrochemical determination of dopamine in the presence of ascorbic acid based on the gold nanorods/carbon nanotubes composite film. Electrochim Acta 56:8851–8856

    Article  CAS  Google Scholar 

  67. Jia Z, Liu J, Shen Y (2007) Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem Commun 9:2739–2743

    Article  CAS  Google Scholar 

  68. Li L, Lu H, Deng L (2013) A sensitive NADH and ethanol biosensor based on graphene-au nanorods nanocomposites. Talanta 113:1–6

    Article  CAS  Google Scholar 

  69. Jayabal S, Ramaraj R (2015) Amperometric sensing of NADH at gold nanorods stabilized in amine-functionalized silicate sol–gel matrix modified electrode. J Appl Electrochem 45:881–888

    Article  CAS  Google Scholar 

  70. Silva FDADS, Silva MGAD, Lima PR, Meneghetti MR, Kubota LT, Goulart MOF (2013) A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods. Biosens Bioelectron 50:202–209

    Article  CAS  Google Scholar 

  71. Jagriti N, Nitesh M, Gajendra S, Pundir CS (2015) Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosens Bioelectron 66:332–337

    Article  Google Scholar 

  72. Bai W, Huang H, Li Y, Zhang H, Liang B, Guo R, Du L, Zhang Z (2014) Direct preparation of well-dispersed graphene/gold nanorodcomposites and their application in electrochemical sensors for determination of ractopamine. Electrochim Acta 117:322–328

    Article  CAS  Google Scholar 

  73. Rahi A, Sattarahmady N, Vais RD, Heli H (2015) Sonoelectrodeposition of gold nanorods at a gold surface – Applicationfor electrocatalytic reduction and determination of nitrofurazone. Sensors Actuators B Chem 210:96–102

    Article  CAS  Google Scholar 

  74. Mengdong W, Yitao H, Xingxing L, Zhou N, Chunyan D, Manli G, Shouzhuo Y (2011) Assembly of layer-by-layer films of superoxide dismutase and gold nanorods: a third generation biosensor for superoxide anion. Sci China Mater 54:1284–1291

    Google Scholar 

  75. Arvand M, Gholizadeh TM (2013) Gold nanorods-graphene oxide nanocomposite incorporated carbonnanotube paste modified glassy carbon electrode for voltammetric determination of indomethacin. Sensors Actuators B Chem 186:622–632

    Article  CAS  Google Scholar 

  76. Komathi S, Gopalan AI, Kim SK, Anand GS, Lee KP (2013) Fabrication of horseradish peroxidase immobilized poly(N-[3-(trimethoxy silyl)propyl]aniline) gold nanorods film modified electrode and electrochemical hydrogen peroxide sensing. Electrochim Acta 92:71–78

    Article  CAS  Google Scholar 

  77. Zhang S, Han L, Hou C, Li C, Lang Q, Han L, Liu A (2015) Novel glucose sensor with au@ag heterogeneous nanorods based on electrocatalytic reduction of hydrogen peroxide at negative potential and neutral pH. J Electroanal Chem 742:84–89

    Article  CAS  Google Scholar 

  78. Li Y, Wang F, Huang F, Li Y, Feng S (2012) Direct electrochemistry of glucose oxidase and its biosensing to glucose based on the chit-MWCNTs–AuNRs modified gold electrode. J Electroanal Chem 685:86–90

    Article  CAS  Google Scholar 

  79. Nirala NR, Abraham S, Kumar V, Pandey SA, Yadav U, Srivastava M, Srivastava SK, Singh VN, Kayastha AM, Srivastava A, Saxena PS (2015) Partially reduced graphene oxide-gold nanorods composite based bioelectrode of improved sensing performance. Talanta 144:745–754

    Article  CAS  Google Scholar 

  80. Rasheed PA, Sandhyarani N (2017) Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta 84:981–1000

    Article  Google Scholar 

  81. Han X, Fang X, Shi A, Wang J, Zhang Y (2013) An electrochemical DNA biosensor based on gold nanorods decorated graphene oxide sheets for sensing platform. Anal Biochem 443:117–123

    Article  CAS  Google Scholar 

  82. Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/ au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442–446

    Article  CAS  Google Scholar 

  83. Azimzadeh M, Rahaiea M, Navid Nasirizadeh N, Ashtari K, Manesh HN (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99–106

    Article  CAS  Google Scholar 

  84. Zhang Y, Ge L, Li M, Yan M, Ge S, Yu J, Song X, Cao B (2014) Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay. Chem Commun 50:1417–1419

    Article  CAS  Google Scholar 

  85. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184:969–979

    Article  CAS  Google Scholar 

  86. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays for the carcinoembryonic antigen. A review. Microchim Acta 184:389–414

    Article  CAS  Google Scholar 

  87. Sun Z, Deng L, Gan H, Shen R, Yang M, Zhang Y (2013) Sensitive immunosensor for tumor necrosis factor based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorods. Biosens Bioelectron 39:215–219

    Article  CAS  Google Scholar 

  88. Zang S, Liu Y, Lin M, Kang J, Sun Y, Lei H (2013) A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label. Electrochim Acta 90:246–253

    Article  CAS  Google Scholar 

  89. Sun G, Liu H, Zhang Y, Yu J, Yan M, Song X, He W (2015) Gold nanorods-paper electrode based enzyme-free electrochemical immunoassay of prostate specific antigen using porous zinc oxide spheres-silver nanoparticles nanocomposites as labels. New J Chem 39:6062–6067

    Article  CAS  Google Scholar 

  90. Du D, Wang J, Lu D, Dohnalkova A, Lin Y (2011) Multiplexed electrochemical immunoassay of phosphorylated proteins based on enzyme-functionalized gold Nanorod labels and electric field-driven acceleration. Anal Chem 83:6580–6585

    Article  CAS  Google Scholar 

  91. Cheng AKH, Sen D, Yu HZ (2009) Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry 77:1–12

    Article  CAS  Google Scholar 

  92. Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82:8131–8136

    Article  CAS  Google Scholar 

  93. Shakoori Z, Salimian S, Kharrazi S, Adabi M, Saber R (2015) Electrochemical DNA biosensor based on gold nanorods for detecting hepatitis B virus. Anal Bioanal Chem 407:455–461

    Article  CAS  Google Scholar 

  94. Wen W, Huang JY, Bao T, Zhou J, Xia HX, Zhang XH, Wang SF, Zhao YD (2016) Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 83:142–148

    Article  CAS  Google Scholar 

  95. Gallina ME, Zhou Y, Johnson CJ, Harris-Birtill D, Singh M, Zhao H, Ma D, Cass T, Elson DS (2016) Aptamer-conjugated, fluorescent gold nanorods as potential cancer theradiagnostic agents. Mater Sci Eng C 59:324–332

    Article  CAS  Google Scholar 

  96. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45

    Article  CAS  Google Scholar 

  97. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PR and AP dedicated this article to Professor R.Ramaraj, CSIR-Emeritus Scientist, School of Chemistry, Madurai Kamaraj University for his pioneer contribution in electrocatalysis and sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alagarsamy Pandikumar.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagiri, M., Rameshkumar, P. & Pandikumar, A. Gold nanorod-based electrochemical sensing of small biomolecules: A review. Microchim Acta 184, 3069–3092 (2017). https://doi.org/10.1007/s00604-017-2418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2418-6

Keywords

Navigation