Skip to main content
Log in

Photoelectrochemical dopamine sensor based on a gold electrode modified with SnSe nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have prepared SnSe nanosheets by a solvothermal method and used them to modify a gold electrode to obtain a photoelectrochemical (PEC) sensor for dopamine (DA) which yields a signal upon irradiation with visible light. On addition of DA, the photocurrent is significantly higher than in the absence of DA, and it increases with increasing DA concentration. A PEC sensor was developed based on this finding which responds linearly to DA in the 0.01 μM to 10 μM concentration range and with a 3 nM detection limit. The application of this PEC sensor in actual samples was also tested. The mechanism of PEC analysis of DA is provided. The electrons of SnSe NSs were excited under irradiation with visible light and transformed from valance band to conduction band. DA as electron donor provided the electrons to SnSe NSs. An enhanced photocurrent was obtained.

Schematic of a photoelectrochemical platform for sensing dopamine by using a gold electrode modified with SnSe nanosheets. It has a detection limit of 3 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Zhao WW, Xu JJ, Chen HY (2014) Photoelectrochemical DNA biosensors. Chem rev 114(15):7421–7441

    Article  CAS  Google Scholar 

  2. Wang H, Liu P, Jiang W, Li X, Yin H, Ai S (2017) Photoelectrochemical immunosensing platform for M. SssI methyltransferase activity analysis and inhibitor screening based on g-C3N4 and CdS quantum dots. Sensor Actuat B-Chem 244:458–465

    Article  CAS  Google Scholar 

  3. Yusoff N, Pandikumar A, Ramaraj R, Ngee LH, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114

    Article  CAS  Google Scholar 

  4. Li Z, Xin Y, Zhang Z (2015) New Photocathodic analysis platform with quasi-Core/Shell-structured TiO2@Cu2O for sensitive detection of H2O2 release from living cells. Anal Chem 87(20):10491–10497

    Article  CAS  Google Scholar 

  5. Tang J, Wang Y, Li J, Da P, Geng J, Zheng G (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem a 2(17):6153–6157

    Article  CAS  Google Scholar 

  6. Liu B, Liu J (2015) DNA adsorption by indium tin oxide nanoparticles. Langmuir 31(1):371–377

    Article  CAS  Google Scholar 

  7. Shi XM, Fan GC, Shen Q, Zhu JJ (2016) Photoelectrochemical DNA biosensor based on dual-signal amplification strategy integrating inorganic-organic nanocomposites sensitization with λ-exonuclease-assisted target recycling. ACS Appl Mater Interfaces 8:35091–35098

    Article  CAS  Google Scholar 

  8. Ding L, Ma C, Li L, Zhang L, Yu J (2016) A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J Electroanal Chem 783:176–181

    Article  CAS  Google Scholar 

  9. Raoof JB, Chekin F, Ehsani V (2015) Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas. Bull Mater Sci 38(1):135–140

    Article  CAS  Google Scholar 

  10. Zhao WW, Xu JJ, Chen HY (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc rev 44(3):729–741

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  12. Thongrattanasiri S, Koppens FH, Garcia de Abajo FJ (2012) Complete optical absorption in periodically patterned graphene. Phys rev Lett 108(4):047401

    Article  Google Scholar 

  13. Chen L, He L, Wang HS, Wang H, Tang S, Cong C, Xie H, Li L, Xia H, Li T, Wu T, Zhang D, Deng L, Yu T (2017) Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat Commun 8:14703

    Article  Google Scholar 

  14. Castellanos-Gomez A, Quereda J, van der Meulen HP, Agrait N, Rubio-Bollinger G (2016) Spatially resolved optical absorption spectroscopy of single- and few-layer MoS(2) by hyperspectral imaging. Nanotech 27(11):115705

    Article  Google Scholar 

  15. Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

    Article  CAS  Google Scholar 

  16. Shih PH, Chiu YH, Wu JY, Shyu FL, Lin MF (2017) Coulomb excitations of monolayer germanene. Sci rep 7:40600

    Article  CAS  Google Scholar 

  17. Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496):373–377

    Article  CAS  Google Scholar 

  18. Shi G, Kioupakis E (2015) Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett 15(10):6926–6931

    Article  Google Scholar 

  19. Kim HU, Kim H, Ahn C, Kulkarni A, Jeon M, Yeom G, Lee MH, Kim T (2015) In situ synthesis of MoS2 on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Adv 5(14):10134–10138

    Article  CAS  Google Scholar 

  20. Ren X, Qi X, Shen Y, Xu G, Li J, Li Z, Huang Z, Zhong J (2016) Synthesis of SnSe nanosheets by hydrothermal intercalation and exfoliation route and their photoresponse properties. Mater Sci Eng B 214:46–50

    Article  CAS  Google Scholar 

  21. Chung KM, Wamwangi D, Woda M, Wuttig M, Bensch W (2008) Investigation of SnSe, SnSe2, and Sn2Se3 alloys for phase change memory applications. J Appl Phys 103(8):083523–083527

    Article  Google Scholar 

  22. Pospischil A, Furchi MM, Mueller T (2014) Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat Nanotechnol 9(4):257–261

    Article  CAS  Google Scholar 

  23. Zhao S, Wang H, Zhou Y, Liao L, Jiang Y, Yang X, Chen G, Lin M, Wang Y, Peng H (2015) Controlled synthesis of single-crystal SnSe nanoplates. Nano Research 8(1):288–295

    Article  CAS  Google Scholar 

  24. Ju H, Kim J (2016) Chemically exfoliated SnSe Nanosheets and their SnSe/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) composite films for polymer based thermoelectric applications. ACS Nano 10(6):5730–5739

    Article  CAS  Google Scholar 

  25. Li Y, He B, Heremans JP, Zhao J-C (2016) High-temperature oxidation behavior of thermoelectric SnSe. J Alloys Compd 669:224–231

    Article  CAS  Google Scholar 

  26. Phillips PE, Stuber GD, Heien ML, Wightman RM, Carelli RM (2003) Subsecond dopamine release promotes cocaine seeking. Nature 422(6932):614–618

    Article  CAS  Google Scholar 

  27. Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X (2011) Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust ag-catechol interaction. Chem Commun 47(4):1181–1183

    Article  CAS  Google Scholar 

  28. Khattar R, Mathur P (2013) 1-(Pyridin-2-ylmethyl)-2-(3-(1-(pyridin-2-ylmethyl)benzimidazol-2-yl) propyl) benzimidazole and its copper(II) complex as a new fluorescent sensor for dopamine (4-(2-aminoethyl)benzene-1,2-diol). Inorg Chem Commun 31(5):37–43

    Article  CAS  Google Scholar 

  29. Palanisamy S, Thangavelu K, Chen SM, Gnanaprakasam P, Velusamy V, Liu XH (2016) Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 151:401–407

    Article  CAS  Google Scholar 

  30. Xin Y, Li Z, Wu W, Fu B, Wu H, Zhang Z (2017) Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens Bioelectron 87:396–403

    Article  CAS  Google Scholar 

  31. Pruneanu S, Biris AR, Pogacean F, Socaci C, Coros M, Rosu MC, Watanabe F, Biris AS (2015) The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochim Acta 154(37):197–204

    Article  CAS  Google Scholar 

  32. Lou JH (2006) Solvothermal synthesis and characterist of thin sulfide and tin selenide nanocrystals. Qingdao University of Science and Technology, Qingdao, Shangdong, China

  33. Yan Y, Liu Q, Du X, Qian J, Mao H, Wang K (2015) Visible light photoelectrochemical sensor for ultrasensitive determination of dopamine based on synergistic effect of graphene quantum dots and TiO2 nanoparticles. Anal Chim Acta 853:258–264

    Article  CAS  Google Scholar 

  34. De Benedetto GE, Fico D, Pennetta A, Malitesta C, Nicolardi G, Lofrumento DD, De NF, La PV (2014) A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. J Pharm Biomed Anal 98(10):266–270

    Article  Google Scholar 

  35. Matsui H, Oaki Y, Imai H (2016) Surface-functionalized hydrophilic monolayer of titanate and its application for dopamine detection. Chem Comm 52(60):9466

    Article  CAS  Google Scholar 

  36. Xu B, Su Y, Li L, Liu R, Lv Y (2017) Thiol-functionalized single-layered MoS2 nanosheet as a photoluminescence sensing platform via charge transfer for dopamine detection. Sensor Actuat B-Chem 246:380–388

    Article  CAS  Google Scholar 

  37. Zhang X, Zhu Y, Li X, Guo X, Zhang B, Jia X, Dai B (2016) A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Anal Chim Acta 944:51–56

    Article  CAS  Google Scholar 

  38. Jiang L, Nelson GW, Abda J, Foord JS (2016) Novel modifications to carbon-based electrodes to improve the electrochemical detection of dopamine. Acs Appl Mater Inter 8(42):28338–28348

    Article  CAS  Google Scholar 

  39. Baraneedharan P, Alexander S, Ramaprabhu S (2016) One-step in situ hydrothermal preparation of graphene–SnO2 nanohybrid for superior dopamine detection. J Appl Electrochem 46(12):1187–1197

    Article  CAS  Google Scholar 

  40. Song H, Xue G, Zhang J, Wang G, Ye B-C, Sun S, Tian L, Li Y (2017) Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide. Microchim Acta 184:843–853

    Article  CAS  Google Scholar 

  41. Alves SA, Soares LL, Goulart LA, Mascaro LH (2016) Solvent effects on the photoelectrochemical properties of WO3 and its application as dopamine sensor. J Solid State Electr 9:2461–2470

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21575073, 21405088), the Taishan Scholar Program of Shandong Province, Shandong Provincial Natural Science Foundation (ZR2014JL013) and the Open Project Program of the Key Laboratory of Marine Bioactive Substance and Modern Analysis Technology, SOA (MBSMAT-2015-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Hun or Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hun, X., Wang, S., Mei, S. et al. Photoelectrochemical dopamine sensor based on a gold electrode modified with SnSe nanosheets. Microchim Acta 184, 3333–3338 (2017). https://doi.org/10.1007/s00604-017-2347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2347-4

Keywords

Navigation