Skip to main content
Log in

Amperometric determination of the activity of protein kinase a using a glassy carbon electrode modified with IgG functionalized gold nanoparticles conjugated to horseradish peroxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the fabrication of an electrochemical immunosensor for the determination of the activity of protein kinase A (PKA). The method involves (a) electrochemical deposition of gold nanoparticles (AuNPs) on a glassy carbon electrode, (b) PKA-induced catalytic phosphorylation of serine, and (c) the use of phosphoserine antibody and horseradish peroxidase conjugated to IgG on gold nanoparticles (HRP-IgG-AuNPs). The use of AuNPs and HRP-IgG-AuNPs results in large amplification so that the method, at a typical working potential as low as 0.08 V (vs. SCE), has a linear range that extends from 0.1 to 50 activity units per mL, and the detection limit is 0.026 units per mL (at an S/N ratio of 3). The assay is selective (not the least due to a rather low working potential) and well reproducible. It may also be applied to screening for PKA inhibitors and to quantify the PKA activity in human cell lysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. López-Otín C, Hunter T (2010) The regulatory crosstalk between kinases and proteases in cancer. Nat rev Cancer 10(4):278–292. doi:10.1038/nrc2823

    Google Scholar 

  2. Griner EM, Kazanietz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat rev Cancer 7(4):281–294. doi:10.1038/nrc2110

    Article  CAS  Google Scholar 

  3. Flajolet M, He G, Heiman M, Lin A, Nairn AC, Greengard P (2007) Regulation of Alzheimer's disease amyloid-β formation by casein kinase I. Proc Natl Acad Sci 104(10):4159–4164. doi:10.1073/pnas.0611236104

    Article  CAS  Google Scholar 

  4. Turk BE, Hutti JE, Cantley LC (2006) Determining protein kinase substrate specificity by parallel solution-phase assay of large numbers of peptide substrates. Nat Protoc 1(1):375. doi:10.1038/nprot.2006.57

    Article  CAS  Google Scholar 

  5. Wang Z, Lee J, Cossins AR, Brust M (2005) Microarray-based detection of protein binding and functionality by gold nanoparticle probes. Anal Chem 77(17):5770–5774. doi:10.1021/ac050679v

    Article  CAS  Google Scholar 

  6. Wang Z, Lévy R, Fernig DG, Brust M (2006) Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J Am Chem Soc 128(7):2214–2215. doi:10.1021/ja058135y

    Article  CAS  Google Scholar 

  7. Shen C, Zhang K, Gao N, Wei S, Liu G, Chai Y, Yang M (2016) Colorimetric and electrochemical determination of the activity of protein kinase based on retarded particle growth due to binding of phosphorylated peptides to DNA-capped silver nanoclusters. Microchim Acta 183(11):2933–2939. doi:10.1007/s00604-016-1944-y

    Article  CAS  Google Scholar 

  8. Zhou J, Xu X, Liu W, Liu X, Nie Z, Qing M, Nie L, Yao S (2013) Graphene oxide-peptide nanocomplex as a versatile fluorescence probe of protein kinase activity based on phosphorylation protection against carboxypeptidase digestion. Anal Chem 85(12):5746–5754. doi:10.1021/ac400336u

    Article  CAS  Google Scholar 

  9. Ji L, Wu J-H, Luo Q, Li X, Zheng W, Zhai G, Wang F, Lu S, Feng Y-Q, Liu J (2012) Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors. Anal Chem 84(5):2284–2291. doi:10.1021/ac202897u

    Article  CAS  Google Scholar 

  10. Li T, Liu D, Wang Z (2009) Microarray-based Raman spectroscopic assay for kinase inhibition by gold nanoparticle probes. Biosens Bioelectron 24(11):3335–3339. doi:10.1016/j.bios.2009.04.033

    Article  CAS  Google Scholar 

  11. Inamori K, Kyo M, Nishiya Y, Inoue Y, Sonoda T, Kinoshita E, Koike T, Katayama Y (2005) Detection and quantification of on-chip phosphorylated peptides by surface plasmon resonance imaging techniques using a phosphate capture molecule. Anal Chem 77(13):3979–3985. doi:10.1021/ac050135t

    Article  CAS  Google Scholar 

  12. Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta. doi:10.1007/s00604-00017-02146-y

  13. Kavosi B, Hallaj R, Teymourian H, Salimi A (2014) Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine-viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 59:389–396. doi:10.1016/j.bios.2014.03.049

    Article  CAS  Google Scholar 

  14. Yin H, Xu Z, Zhou Y, Wang M, Ai S (2013) An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds. Analyst 138(6):1851–1857. doi:10.1039/c3an36526c

    Article  CAS  Google Scholar 

  15. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183(7):2063–2083. doi:10.1007/s00604-016-1858-8

    Article  CAS  Google Scholar 

  16. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Zolfaghari N (2017) An ultrasensitive sandwich-type electrochemical immunosensor for the determination of SKBR-3 breast cancer cell using rGO-TPA/FeHCFnano labeled anti-HCT as a signal tag. Sensors Actuators B Chem 243:823–830. doi:10.1016/j.snb.2016.12.061

    Article  CAS  Google Scholar 

  17. Haji-Hashemi H, Norouzi P, Safarnejad MR, Ganjali MR (2017) Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sensors Actuators B Chem 244:211–216. doi:10.1016/j.snb.2016.12.135

    Article  CAS  Google Scholar 

  18. Boujday S, Briandet R, Salmain M, Herry J-M, Marnet P-G, Gautier M, Pradier C-M (2008) Detection of pathogenic Staphylococcus aureus bacteria by gold based immunosensors. Microchim Acta 163(3):203. doi:10.1007/s00604-008-0024-3

    Article  CAS  Google Scholar 

  19. Fei J, Dou W, Zhao G (2016) Amperometric immunoassay for the detection of Salmonella pullorum using a screen - printed carbon electrode modified with gold nanoparticle-coated reduced graphene oxide and immunomagnetic beads. Microchim Acta 183(2):757–764. doi:10.1007/s00604-015-1721-3

    Article  CAS  Google Scholar 

  20. Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A Rreview. Microchim Acta 184(2):389–414. doi:10.1007/s00604-016-2066-2

    Article  CAS  Google Scholar 

  21. Liu X, Li Y, Xu X, Li P, Nie Z, Huang Y, Yao S (2014) Nanomaterial-based tools for protein kinase bioanalysis. TrAC Trends Anal Chem 58:40–53. doi:10.1016/j.trac.2014.01.009

    Article  Google Scholar 

  22. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem rev 112(5):2739–2779. doi:10.1021/cr2001178

    Article  CAS  Google Scholar 

  23. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177(3):245–270. doi:10.1007/s00604-011-0758-1

    Article  CAS  Google Scholar 

  24. Zhang S, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S (2016) A double signal electrochemical human immunoglobulin G immunosensor based on gold nanoparticles-polydopamine functionalized reduced graphene oxide as a sensor platform and AgNPs/carbon nanocomposite as signal probe and catalytic substrate. Biosens Bioelectron 77:1078–1085. doi:10.1016/j.bios.2015.10.089

    Article  CAS  Google Scholar 

  25. Liang R-P, Xiang C-Y, Zhao H-F, Qiu J-D (2014) Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using a multifunctional nanoprobe. Anal Chim Acta 812:33–40. doi:10.1016/j.aca.2013.12.037

    Article  CAS  Google Scholar 

  26. Liu J, He X, Wang K, He D, Wang Y, Mao Y, Shi H, Wen L (2015) A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex-hemin and gold nanoparticles. Biosens Bioelectron 70:54–60. doi:10.1016/j.bios.2015.03.026

    Article  CAS  Google Scholar 

  27. Wang Z, Yan Z, Sun N, Liu Y (2015) Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition. Biosens Bioelectron 68:771–776. doi:10.1016/j.bios.2015.02.006

    Article  CAS  Google Scholar 

  28. Xu S, Liu Y, Wang T, Li J (2010) Highly sensitive electrogenerated chemiluminescence biosensor in profiling protein kinase activity and inhibition using gold nanoparticle as signal transduction probes. Anal Chem 82(22):9566–9572

    Article  CAS  Google Scholar 

  29. Yin H, Sun B, Dong L, Li B, Zhou Y, Ai S (2015) A signal "on" photoelectrochemical biosensor for assay of protein kinase activity and its inhibitor based on graphite-like carbon nitride, Phos-tag and alkaline phosphatase. Biosens Bioelectron 64:462–468. doi:10.1016/j.bios.2014.09.070

    Article  CAS  Google Scholar 

  30. Li X, Zhou Y, Xu Y, Xu H, Wang M, Yin H, Ai S (2016) A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal Chim Acta 934:36–43. doi:10.1016/j.aca.2016.06.024

    Article  CAS  Google Scholar 

  31. Yin H, Wang M, Li B, Yang Z, Zhou Y, Ai S (2015) A sensitive electrochemical biosensor for detection of protein kinase a activity and inhibitors based on Phos-tag and enzymatic signal amplification. Biosens Bioelectron 63:26–32. doi:10.1016/j.bios.2014.07.016

    Article  CAS  Google Scholar 

  32. Wang Z, Sun N, He Y, Liu Y, Li J (2014) DNA assembled gold nanoparticles polymeric network blocks modular highly sensitive electrochemical biosensors for protein kinase activity analysis and inhibition. Anal Chem 86(12):6153–6159. doi:10.1021/ac501375s

    Article  CAS  Google Scholar 

  33. Liu J, He X, Wang K, Wang Y, Yan G, Mao Y (2014) Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids. Talanta 129:328–335. doi:10.1016/j.talanta.2014.05.043

    Article  CAS  Google Scholar 

  34. Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87(1):693–698. doi:10.1021/ac503492k

    Article  CAS  Google Scholar 

  35. Zhou J, Xu X, Liu X, Li H, Nie Z, Qing M, Huang Y, Yao S (2014) A gold nanoparticles colorimetric assay for label-free detection of protein kinase activity based on phosphorylation protection against exopeptidase cleavage. Biosens Bioelectron 53:295–300. doi:10.1016/j.bios.2013.09.070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation (No. 2014 M550369), the National Natural Science Foundation of China (No. 21375079), the Natural Science Foundation of Shandong province, China (No. ZR2014BQ029), and the Project of Development of Science and Technology of Shandong Province, China (No. 2013GZX20109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanshun Yin.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2.83 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, M., Yin, H. et al. Amperometric determination of the activity of protein kinase a using a glassy carbon electrode modified with IgG functionalized gold nanoparticles conjugated to horseradish peroxidase. Microchim Acta 184, 3301–3308 (2017). https://doi.org/10.1007/s00604-017-2341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2341-x

Keywords

Navigation