Abstract
The article describes a colorimetric assay for the determination of thrombin. It is based on the application of a triple enzyme-mimetic activity and a dual aptamer binding strategy. The triple signal amplification relies on oxidation of the chromogenic enzyme substrate 3,3,5,5-tetramethylbenzidine (TMB) that is catalyzed by composites consisting of graphene oxide (GO), gold/platinum nanoparticles (AuPtNP), and aptamer (Apt15), a G-quadruplex/hemin conjugate. The dual-aptamer target binding strategy is based on the fact that thrombin has two active sites to be recognized by its aptamers (Apt15 and Apt29). Magnetic beads (MBs) were modified with Apt29 (Apt29-MB) and then are bound by the GO-AuPtNP-Apt15/G-quadruplex/hemin composites. In the presence of thrombin, Apt29-MB and the GO-AuPtNP-Apt15/G-quadruplex/hemin composites form a sandwich-like superstructure. Thus, the absorbance increases due to the formation of TMB oxide produced by catalysis of the composites. Under optimized conditions, the absorbance at 450 nm increases linearly in the 0.30 to 100 nM thrombin concentration range, and the limit of detection is 0.15 nM. The method is simple, rapid, and does not require complicated instrumentation. Bovine serum albumin, human serum albumin and other proteins were found not to interfere.
Similar content being viewed by others
References
Tan LH, Xing H, Lu Y (2014) DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc Chem Res 47(6):1881–1890. doi:10.1021/ar500081k
Chang CC, Chen CY, Chuang TL, Wu TH, Wei SC, Liao H, Lin CW (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205
Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105
Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trends Anal Chem 85(Part C):85–97. doi:10.1016/j.trac.2016.08.008
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583
Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26(25):4200–4217. doi:10.1002/adma.201400238
Li J, Li W, Qiang W, Wang X, Li H, Xu D (2014) A non-aggregation colorimetric assay for thrombin based on catalytic properties of silver nanoparticles. Anal Chim Acta 807:120–125. doi:10.1016/j.aca.2013.11.011
Maroneze CM, dos Santos GP, de Moraes VB, da Costa LP, Kubota LT (2016) Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing. Biosens Bioelectron 77:746–751. doi:10.1016/j.bios.2015.10.042
Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.1002/adma.200903783
Zheng C, Zheng A-X, Liu B, Zhang X-L, He Y, Li J, Yang H-H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50(86):13103–13106. doi:10.1039/C4CC05339G
Fan S, Zhao M, Ding L, Li H, Chen S (2017) Preparation of Co 3 O 4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 89:846–852
Ahmed SR, Kim J, Suzuki T, Lee J, Park EY (2016) Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron 85:503–508. doi:10.1016/j.bios.2016.05.050
Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nano 4(21):6823–6830. doi:10.1039/c2nr31716h
Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6. doi:10.1016/j.bios.2015.05.044
Zhang S, Wang K, Li J, Li Z, Sun T (2015) Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide-platinum/gold nanoparticles. RSC Adv 5(92):75746–75752. doi:10.1039/C5RA13550H
Wang Y, Tang L, Li Z, Lin Y, Li J (2014) In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 9(8):1944–1955. doi:10.1038/nprot.2014.126
Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 5(8):6425–6433. doi:10.1021/nn201606r
Sun D, Lu J, Zhong Y, Yu Y, Wang Y, Zhang B, Chen Z (2016) Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens Bioelectron 75:301–307. doi:10.1016/j.bios.2015.08.056
Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C (2012) Designed Diblock oligonucleotide for the synthesis of spatially isolated and highly Hybridizable functionalization of DNA–gold nanoparticle nanoconjugates. J Am Chem Soc 134(29):11876–11879. doi:10.1021/ja304118z
Liu Y, Holmstrom E, Zhang J, Yu P, Wang J, Dyba MA, De C, Ying J, Lockett S, Nesbitt DJ, Ferre-D’Amare AR, Sousa R, Stagno JR, Wang Y-X (2015) Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522(7556):368–372. doi:10.1038/nature14352
Ma H, Liu J, Ali MM, Mahmood MA, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44(5):1240–1256. doi:10.1039/c4cs00357h
Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example--a review. Anal Chim Acta 837:1–15
Grimaldi IA, Testa G, Persichetti G, Loffredo F, Villani F, Bernini R (2016) Plasma functionalization procedure for antibody immobilization for SU-8 based sensor. Biosens Bioelectron 86:827–833. doi:10.1016/j.bios.2016.07.090
Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S, Strano MS (2014) Recent advances in molecular recognition based on Nanoengineered platforms. Acc Chem Res 47(4):979–988. doi:10.1021/ar400162w
Deng N, Jiang B, Chen Y, Liang Z, Zhang L, Liang Y, Yang K, Zhang Y (2016) Aptamer-conjugated gold functionalized graphene oxide nanocomposites for human α-thrombin specific recognition. J Chromatogr A 1427:16–21. doi:10.1016/j.chroma.2015.12.018
Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134(17):7266–7269. doi:10.1021/ja3014055
Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45(9):2583–2602. doi:10.1039/c5cs00645g
Li T, Wang E, Dong S (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 31(31):3654–3656
Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7. doi:10.1016/j.bios.2016.05.100
Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438. doi:10.1016/j.bios.2016.06.036
Lin B, Sun Q, Liu K, Lu D, Fu Y, Xu Z, Zhang W (2014) Label-free colorimetric protein assay and logic gates design based on the self-assembly of hemin-graphene hybrid nanosheet. Langmuir : ACS J Surf Colloids 30(8):2144–2151. doi:10.1021/la4048769
Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, Ruaan RC, Chen WY (2008) Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem 80(17):6580–6586. doi:10.1021/ac8006957
Zhao Y, Liu X, Li J, Qiang W, Sun L, Li H, Xu D (2016) Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 150:81–87. doi:10.1016/j.talanta.2015.09.013
Li N, Chen J, Luo M, Chen C, Ji X, He Z (2017) Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens Bioelectron 87:325–331. doi:10.1016/j.bios.2016.08.067
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 81573387, 81603072, 81673390), Jiangsu Provincial key research and development program (No. BE2016745), Natural Science Foundation of Jiangsu Province (No. BK20151445) and sponsored by Qing Lan Project.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Institutional Review Board approval was not required because the study is not on animals. Written informed consent was not required for this study because the study is not on human subjects.
Electronic supplementary material
ESM 1
(DOCX 1152 kb)
Rights and permissions
About this article
Cite this article
Wang, L., Yang, W., Li, T. et al. Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184, 3145–3151 (2017). https://doi.org/10.1007/s00604-017-2327-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00604-017-2327-8