Skip to main content
Log in

Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The article describes a colorimetric assay for the determination of thrombin. It is based on the application of a triple enzyme-mimetic activity and a dual aptamer binding strategy. The triple signal amplification relies on oxidation of the chromogenic enzyme substrate 3,3,5,5-tetramethylbenzidine (TMB) that is catalyzed by composites consisting of graphene oxide (GO), gold/platinum nanoparticles (AuPtNP), and aptamer (Apt15), a G-quadruplex/hemin conjugate. The dual-aptamer target binding strategy is based on the fact that thrombin has two active sites to be recognized by its aptamers (Apt15 and Apt29). Magnetic beads (MBs) were modified with Apt29 (Apt29-MB) and then are bound by the GO-AuPtNP-Apt15/G-quadruplex/hemin composites. In the presence of thrombin, Apt29-MB and the GO-AuPtNP-Apt15/G-quadruplex/hemin composites form a sandwich-like superstructure. Thus, the absorbance increases due to the formation of TMB oxide produced by catalysis of the composites. Under optimized conditions, the absorbance at 450 nm increases linearly in the 0.30 to 100 nM thrombin concentration range, and the limit of detection is 0.15 nM. The method is simple, rapid, and does not require complicated instrumentation. Bovine serum albumin, human serum albumin and other proteins were found not to interfere.

Schematic presentation of the photometric thrombin assay based on a triple enzyme-mimetic activity of combined nanomaterials (consisting of GO, AuPtNPs and the G-quadruplex/hemin DNAzyme) and two aptamers TMB: 3,3,5,5-tetramethylbenzidine, TMBox: 3,3,5,5-tetramethylbenzidine oxide, AuPtNP: gold/platinum nanoparticles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tan LH, Xing H, Lu Y (2014) DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc Chem Res 47(6):1881–1890. doi:10.1021/ar500081k

    Article  CAS  Google Scholar 

  2. Chang CC, Chen CY, Chuang TL, Wu TH, Wei SC, Liao H, Lin CW (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205

    Article  CAS  Google Scholar 

  3. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105

    Article  CAS  Google Scholar 

  4. Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trends Anal Chem 85(Part C):85–97. doi:10.1016/j.trac.2016.08.008

    Article  CAS  Google Scholar 

  5. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  6. Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26(25):4200–4217. doi:10.1002/adma.201400238

    Article  CAS  Google Scholar 

  7. Li J, Li W, Qiang W, Wang X, Li H, Xu D (2014) A non-aggregation colorimetric assay for thrombin based on catalytic properties of silver nanoparticles. Anal Chim Acta 807:120–125. doi:10.1016/j.aca.2013.11.011

    Article  CAS  Google Scholar 

  8. Maroneze CM, dos Santos GP, de Moraes VB, da Costa LP, Kubota LT (2016) Multifunctional catalytic platform for peroxidase mimicking, enzyme immobilization and biosensing. Biosens Bioelectron 77:746–751. doi:10.1016/j.bios.2015.10.042

    Article  CAS  Google Scholar 

  9. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.1002/adma.200903783

    Article  CAS  Google Scholar 

  10. Zheng C, Zheng A-X, Liu B, Zhang X-L, He Y, Li J, Yang H-H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50(86):13103–13106. doi:10.1039/C4CC05339G

    Article  CAS  Google Scholar 

  11. Fan S, Zhao M, Ding L, Li H, Chen S (2017) Preparation of Co 3 O 4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 89:846–852

    Article  CAS  Google Scholar 

  12. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY (2016) Enhanced catalytic activity of gold nanoparticle-carbon nanotube hybrids for influenza virus detection. Biosens Bioelectron 85:503–508. doi:10.1016/j.bios.2016.05.050

    Article  CAS  Google Scholar 

  13. Tseng CW, Chang HY, Chang JY, Huang CC (2012) Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nano 4(21):6823–6830. doi:10.1039/c2nr31716h

    CAS  Google Scholar 

  14. Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6. doi:10.1016/j.bios.2015.05.044

    Article  CAS  Google Scholar 

  15. Zhang S, Wang K, Li J, Li Z, Sun T (2015) Highly efficient colorimetric detection of ATP utilizing a split aptamer target binding strategy and superior catalytic activity of graphene oxide-platinum/gold nanoparticles. RSC Adv 5(92):75746–75752. doi:10.1039/C5RA13550H

    Article  CAS  Google Scholar 

  16. Wang Y, Tang L, Li Z, Lin Y, Li J (2014) In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 9(8):1944–1955. doi:10.1038/nprot.2014.126

    Article  CAS  Google Scholar 

  17. Ren W, Fang Y, Wang E (2011) A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS Nano 5(8):6425–6433. doi:10.1021/nn201606r

    Article  CAS  Google Scholar 

  18. Sun D, Lu J, Zhong Y, Yu Y, Wang Y, Zhang B, Chen Z (2016) Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens Bioelectron 75:301–307. doi:10.1016/j.bios.2015.08.056

    Article  CAS  Google Scholar 

  19. Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C (2012) Designed Diblock oligonucleotide for the synthesis of spatially isolated and highly Hybridizable functionalization of DNA–gold nanoparticle nanoconjugates. J Am Chem Soc 134(29):11876–11879. doi:10.1021/ja304118z

    Article  CAS  Google Scholar 

  20. Liu Y, Holmstrom E, Zhang J, Yu P, Wang J, Dyba MA, De C, Ying J, Lockett S, Nesbitt DJ, Ferre-D’Amare AR, Sousa R, Stagno JR, Wang Y-X (2015) Synthesis and applications of RNAs with position-selective labelling and mosaic composition. Nature 522(7556):368–372. doi:10.1038/nature14352

    Article  CAS  Google Scholar 

  21. Ma H, Liu J, Ali MM, Mahmood MA, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44(5):1240–1256. doi:10.1039/c4cs00357h

    Article  CAS  Google Scholar 

  22. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li XF, Le XC (2014) Aptamer binding assays for proteins: the thrombin example--a review. Anal Chim Acta 837:1–15

    Article  CAS  Google Scholar 

  23. Grimaldi IA, Testa G, Persichetti G, Loffredo F, Villani F, Bernini R (2016) Plasma functionalization procedure for antibody immobilization for SU-8 based sensor. Biosens Bioelectron 86:827–833. doi:10.1016/j.bios.2016.07.090

    Article  CAS  Google Scholar 

  24. Mu B, Zhang J, McNicholas TP, Reuel NF, Kruss S, Strano MS (2014) Recent advances in molecular recognition based on Nanoengineered platforms. Acc Chem Res 47(4):979–988. doi:10.1021/ar400162w

    Article  CAS  Google Scholar 

  25. Deng N, Jiang B, Chen Y, Liang Z, Zhang L, Liang Y, Yang K, Zhang Y (2016) Aptamer-conjugated gold functionalized graphene oxide nanocomposites for human α-thrombin specific recognition. J Chromatogr A 1427:16–21. doi:10.1016/j.chroma.2015.12.018

    Article  CAS  Google Scholar 

  26. Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134(17):7266–7269. doi:10.1021/ja3014055

    Article  CAS  Google Scholar 

  27. Meng HM, Liu H, Kuai H, Peng R, Mo L, Zhang XB (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45(9):2583–2602. doi:10.1039/c5cs00645g

    Article  CAS  Google Scholar 

  28. Li T, Wang E, Dong S (2008) G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chem Commun 31(31):3654–3656

    Article  Google Scholar 

  29. Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7. doi:10.1016/j.bios.2016.05.100

    Article  CAS  Google Scholar 

  30. Wang Y, Zhu Y, Binyam A, Liu M, Wu Y, Li F (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438. doi:10.1016/j.bios.2016.06.036

    Article  CAS  Google Scholar 

  31. Lin B, Sun Q, Liu K, Lu D, Fu Y, Xu Z, Zhang W (2014) Label-free colorimetric protein assay and logic gates design based on the self-assembly of hemin-graphene hybrid nanosheet. Langmuir : ACS J Surf Colloids 30(8):2144–2151. doi:10.1021/la4048769

    Article  CAS  Google Scholar 

  32. Higuchi A, Siao YD, Yang ST, Hsieh PV, Fukushima H, Chang Y, Ruaan RC, Chen WY (2008) Preparation of a DNA aptamer-Pt complex and its use in the colorimetric sensing of thrombin and anti-thrombin antibodies. Anal Chem 80(17):6580–6586. doi:10.1021/ac8006957

    Article  CAS  Google Scholar 

  33. Zhao Y, Liu X, Li J, Qiang W, Sun L, Li H, Xu D (2016) Microfluidic chip-based silver nanoparticles aptasensor for colorimetric detection of thrombin. Talanta 150:81–87. doi:10.1016/j.talanta.2015.09.013

    Article  CAS  Google Scholar 

  34. Li N, Chen J, Luo M, Chen C, Ji X, He Z (2017) Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens Bioelectron 87:325–331. doi:10.1016/j.bios.2016.08.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81573387, 81603072, 81673390), Jiangsu Provincial key research and development program (No. BE2016745), Natural Science Foundation of Jiangsu Province (No. BK20151445) and sponsored by Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ding.

Ethics declarations

Institutional Review Board approval was not required because the study is not on animals. Written informed consent was not required for this study because the study is not on human subjects.

Electronic supplementary material

ESM 1

(DOCX 1152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, W., Li, T. et al. Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184, 3145–3151 (2017). https://doi.org/10.1007/s00604-017-2327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2327-8

Keywords

Navigation