Skip to main content
Log in

Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a sensitive surface-enhanced Raman scattering (SERS)-based aptasensor for the detection of the food pathogen Vibrio parahaemolyticus. Nanostructures consisting of Fe3O4@Au particles wrapped with graphene oxide (GO) were used both as SERS substrates and separation tools. A first aptamer (apt 1) was immobilized on the Fe3O4@Au/GO nanostructures to act as a capture probe via the affinity binding of aptamer and V. parahaemolyticus. A second aptamer (apt-2) was modified with the Raman reporter molecule TAMRA to act as a SERS sensing probes that binds to the target the same way as the Fe3O4@Au/GO-apt 1. The sandwich formed between Fe3O4@Au/GO-apt 1/V. parahaemolyticus and apt 2-TAMRA can be separated with the aid of a magnet. The concentration of V. parahaemolyticus can be quantified by measurement of the SERS intensity of TAMRA. Under optimal conditions, the signal is linearly related to the V. parahaemolyticus concentration in the range between 1.4 × 102 to 1.4 × 106 cfu·mL−1, with a detection limit of 14 cfu·mL−1. Recoveries ranging from 98.5% to 105% are found when analyzing spiked salmon samples. In our perception, the assay described here is a useful tool for quantitation of V. parahaemolyticus in real samples.

GO wrapped Fe3O4@Au nanostructures were synthesized as the substrate and modified with with a first aptamer (apt 1) to capture V. parahaemolyticus. TAMRA labelled aptamer 2 was then used as signal probe. The V. parahaemolyticus concentrations are closely related to the Raman intensity of TAMRA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  2. Betz JF, Yu WW, Cheng Y, White LM, Rubloff GW (2014) Simple SERS substrates: powerful, portable, and full of potential. Phys Chem Chem Phys 16:2224–2239

    Article  CAS  Google Scholar 

  3. Stranahan SM, Willets KA (2010) Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett 10:3777–3784

    Article  CAS  Google Scholar 

  4. Chen JW, Liu XP, Feng KJ, Liang Y, Jiang JH, Shen GL, Yu RQ (2008) Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer. Biosens Bioelectron 24:66–71

    Article  CAS  Google Scholar 

  5. Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403:27–54

    Article  CAS  Google Scholar 

  6. Xie LM, Ling X, Fang Y, Zhang J, Liu ZF (2009) Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. J Am Chem Soc 131:9890–9891

    Article  CAS  Google Scholar 

  7. Chen P, Yin ZY, Huang X, Wu SX, Liedberg B, Zhang H (2011) Assembly of graphene oxide and au 0.7 Ag 0.3 alloy nanoparticles on SiO2 a new Raman substrate with ultrahigh signal-to-background ratio. J Phys Chem C 115:24080–24084

    Article  CAS  Google Scholar 

  8. Xu JH, Wang YZ, Hu SS (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  9. Hou H, Wang P, Zhang J, Li CP, Jin YD (2015) Graphene oxide-supported Ag nanoplates as LSPR tunable and reproducible substrates for SERS applications with optimized sensitivity. ACS Appl Mater Interfaces 7:18038–18045

    Article  CAS  Google Scholar 

  10. Xiao DL, Lu T, Zeng R, YP BI (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183:2655–2675

    Article  CAS  Google Scholar 

  11. Liu ZG, Wang Y, Deng R, Yang LY, Yu SH, Xu SP, Xu WQ (2016) Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced raman scattering (SMSPE-SERS): from sample pretreatment to detection all-in-one. ACS Appl Mater Interfaces 8:14160–14168

    Article  CAS  Google Scholar 

  12. Jarvis RM, Goodacre R (2004) Discrimination of bacteria using surface enhanced Raman spectroscopy. Anal Chem 76:40–47

    Article  CAS  Google Scholar 

  13. Mungroo NA, Oliveira G, Neethirajan S (2016) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183:697–707

    Article  CAS  Google Scholar 

  14. Knauer M, Ivleva NP, Niessner R, Haisch C (2012) A flow-through microarray cell for the online SERS detection of antibody-captured E. coli bacteria. Anal Bioanal Chem 402:2663

    Article  CAS  Google Scholar 

  15. Drake P, Jiang PS, Chang HW, Su SC, Tanha J, Tay LL, Chen PL, Lin YJ (2013) Raman based detection of Staphylococcus aureus utilizing single domain antibody coated nanoparticle labels and magnetic trapping. Anal Methods 5:4152–4158

    Article  CAS  Google Scholar 

  16. Lin YF, Hamme AT (2014) Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle-SECNT bioconjugated nanohybrids. Analyst 139:3702–3705

    Article  CAS  Google Scholar 

  17. Cho IH, Bhandari P, Patei P, Irudayaraj J (2015) Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157:H7 in ground beef. Biosens Bioelectron 64:171–176

    Article  CAS  Google Scholar 

  18. Ellington AD, Szostak JW (1990) In vitro selection of RNA that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  19. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  20. Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    Article  CAS  Google Scholar 

  21. Wang JF, Wu XZ, Wang CW, Shao NS, Dong PT, Xiao R, Wang SQ (2015) Magnetically assisted surface-enhanced raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7:20919–20929

    Article  CAS  Google Scholar 

  22. Duan N, Yan YL, Wu SJ, Wang ZP (2016) Vibrio parahaemolyticus Detection aptasensor using surface-enhanced Raman scattering. Food Control 63:122–127

    Article  CAS  Google Scholar 

  23. Duan N, Chang BY, Zhang H, Wang ZP, Wu SJ (2016) Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 218:38–43

    Article  CAS  Google Scholar 

  24. Zhang H, Ma XY, Liu Y, Duan N, Wu SJ, Wang ZP, Xu BC (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    Article  CAS  Google Scholar 

  25. Duan N, Wu SJ, Chen XJ, Huang YK, Wang ZP (2012) Selection and identification of a DNA aptamer targeted to Vibrio parahaemolyticus. J Agric Food Chem 60:4034–4038

    Article  CAS  Google Scholar 

  26. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD (2005) Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed 44:2782–2785

    Article  CAS  Google Scholar 

  27. Ding GH, Xie S, Zhu YM, Liu Y, Wang L, Xu FG (2015) Graphene oxide wrapped Fe3O4@au nanohybrid as SERS substrate for aromatic dye detection. Sensors Actuators B: Chem 221:1084–1093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the natural science foundation of Jiangsu Province BK20140155, Key Research and Development Program of Jiangsu Province BE2016306, the National Natural Science Fund of China (NSFC 31401575, 31401576), China Postdoctoral Science Foundation (2016 T90430), and Collaborative innovation center of food safety and quality control in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijia Wu or Zhouping Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, N., Shen, M., Wu, S. et al. Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Microchim Acta 184, 2653–2660 (2017). https://doi.org/10.1007/s00604-017-2298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2298-9

Keywords

Navigation