Skip to main content
Log in

Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an amperometric biosensor for the amino acid L-arginine (L-Arg). It is based on the use of a Nafion/Polyaniline (PANi) composite on a platinum screen-printed electrode (Pt-SPE) using a novel recombinant arginine deiminase isolated from Mycoplasma hominis. The protein was over-expressed, purified and employed as a biorecognition element of the sensor. Enzymatic hydrolysis of L-Arg leads to the formation of ammonium ions which diffuse into the Nafion/PANi layer and induce the electroreduction of PANi at a potential of −0.35 V (vs Ag/AgCl). L-Arg sensitivity is 684 ± 32 A·M−1·m−2, and the apparent Michaelis-Menten constant (KM app) is 0.31 ± 0.05 mM. The calibration plot is linear over the range 3–200 μM L-Arg, the limit of detection is 1 μM, and the response time (for 90% of the total signal change to occur) is 15 s. The sensor is selective and exhibits good storage stability (> 1 month without loss in signal). The biosensor was applied to the analysis of L-Arg in pharmaceutical samples and of ammonium and L-Arg in spiked human plasma obtained from blood of healthy volunteers and those with a hepatic disorder. Data generated were found to be in good agreement with a reference fluorometric enzymatic assay.

Schematic of an amperometric biosensor for L-arginine based on a Nafion/polyaniline (PANi) composite at a platinum screen-printed electrode (Pt-SPE) using a novel recombinant arginine deiminase (ADI) from Mycoplasma hominis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50

    Article  CAS  Google Scholar 

  2. Barbul A, Lazarou SA, Efron DT, Wasserkrug H, Efron G (1990) Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 108:331–336

    CAS  Google Scholar 

  3. Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N (2008) Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 14(11):1049–1057

    Article  CAS  Google Scholar 

  4. Vermeulen MA, van de Poll MC, Ligthart-Melis GC, Dejong CH, van den Tol MP, Boelens PG, van Leeuwen PA (2007) Specific amino acids in the critically ill patient--exogenous glutamine/arginine: a common denominator? Crit Care Med 35(9):S568–S576

    Article  CAS  Google Scholar 

  5. Farina M, Finetti G, Busnelli V (1990) High-performance liquid chromatographic method for the simultaneous assay of a new synthetic penem molecule and its salt-forming agent in injectable formulations. J Chromatogr 507:171–176

    Article  CAS  Google Scholar 

  6. Sastry CSP, Tummuru MK (1994) Spectrophotometric determination of arginine in proteins. Food Chem 15:257–260

    Article  Google Scholar 

  7. Miura T, Kashiwura M, Kimura M (1984) A fluorometric method for the specific determination of serum arginine with 2,3-naphthalenedicarbaldehyde. J Biochem 139:432–437

    CAS  Google Scholar 

  8. Jin LT, Zhu H, Xu TM, Tong W, Zhou WL, Fang Y (1992) Indirect determination of arginine by graphite furnace atomic absorption spectrometry after preconcentration on a Nafion chemically modified tungsten coil. Anal Chim Acta 268:159–162

    Article  CAS  Google Scholar 

  9. Godinho OES, Aleixo LM, Neto GO (1991) Titration of proteins in dimethyl sulphoxide-water mixtures. Analyst 116:1181–1183

    Article  CAS  Google Scholar 

  10. Hemandez L, Escalona J, Joshi N, Guzman N (1991) Laser-induced fluorescence and fluorescence microscopy for capillary electrophoresis zone detection. J Chromatogr 559:183–196

    Article  Google Scholar 

  11. Stasyuk N, Gaida G, Gonchar M (2013) L-arginine assay with the use of arginase I. Appl Biochem Microbiol 49(5):529–534

    Article  CAS  Google Scholar 

  12. Stasyuk N, Gayda G, Fayura L, Boretskyy Y, Gonchar M, Sibirny A (2016) Novel arginine deiminase-based method to assay l-arginine in beverages. Food Chem 201:320–326

    Article  CAS  Google Scholar 

  13. Rechnitz GA, Kobos RK, Riechel SJ, Gebauer CR (1977) A bio-selective membrane electrode prepared with living cells. Anal Chim Acta 94:357–365

    Article  CAS  Google Scholar 

  14. Kacaniklic V, Johansson K, Marko-Varga G, Gorton I, Jonsson-Pettersson G, Csoregi E (1994) Amperometric biosensors for detection of L- and D-amino acids based on coimmobilized peroxidase and L- and D-amino acid oxidases in carbon paste electrodes. Electroanalysis 6:381–390

    Article  CAS  Google Scholar 

  15. Domínguez R, Serra B, Reviejo AJ, Pingarrón JM (2001) Chiral analysis of amino acids using electrochemical composite bienzyme biosensors. Anal Biochem 298:275–282

    Article  Google Scholar 

  16. Koncki R, Walcerz I, Ruckruh F, Glab S (1996) Bienzymic potentiometric electrodes for creatine and L-arginine determination. Anal Chim Acta 333:215–222

    Article  CAS  Google Scholar 

  17. Karacaoğlu S, Timur S, Telefoncu A (2003) Arginine selective biosensor based on arginase-urease immobilized in gelatin. Artif Cells Blood Substit Immobil Biotechnol 31:357–363

    Article  Google Scholar 

  18. Nikolelis DP, Hadjiioannou TP (1983) Construction of an arginine enzyme electrode and determination of arginine in biological materials. Anal Chim Acta 147:33–39

    Article  CAS  Google Scholar 

  19. Stasyuk N, Smutok O, Gayda G, Gonchar M, Koval’chuk Y (2011) A new bi-enzyme potentiometric sensor for arginine analysis based on recombinant human arginase i and commercial urease. J Mater Sci Eng 1:819–827

    Google Scholar 

  20. Saiapina OY, Dzyadevych SV, Jaffrezic-Renault N, Soldatkin OP (2012) Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination. Talanta 92:58–64

    Article  CAS  Google Scholar 

  21. Martínez-Periñán E, Revenga-Parra M, Zamora F, Pariente F, Lorenzo E (2016) Nanostructured electrochemical detector for the quantification of amino acids related to metabolic diseases. Sensors Actuators B Chem 236:773–780

    Article  Google Scholar 

  22. Stasyuk N, Smutok O, Gayda G, Vus B, Koval’chuk Y, Gonchar M (2012) Bi-enzyme L-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosens Bioelectron 37(1):46–52

    Article  CAS  Google Scholar 

  23. Stasyuk N, Gayda G, Gonchar M (2014) L-arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors Actuators B Chem 204:515–521

    Article  CAS  Google Scholar 

  24. Ricca E, Brucher B, Schrittwieser JH (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv Synth Catal 353(13):2239–2262

    Article  CAS  Google Scholar 

  25. Wei Y, Zhou H, Sun Y, He Y, Luo Y (2007) Insight into the catalytic mechanism of arginine deiminase: functional studies on the crucial sites. Proteins: Struct, Funct, Bioinf 66(3):740–750

    Article  CAS  Google Scholar 

  26. Verma N, Singh AK, Kaur P (2015) Biosensor based on ion selective electrode for detection of L-arginine in fruit juices. J Anal Chem 70(9):1111–1115

    Article  CAS  Google Scholar 

  27. Luo YC, Do JS (2004) Urea biosensor based on PANi (urease)-Nafion/au composite electrode. Biosens Bioelectron 20(1):15–23

    Article  CAS  Google Scholar 

  28. Fayura LR, Boretsky YR, Pynyaha YV, Wheatley DN, Sibirny AA (2013) Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli. J Biotechnol 167:420–426

    Article  CAS  Google Scholar 

  29. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189(1):113–130

    Article  CAS  Google Scholar 

  30. Misawa S, Aoshima M, Takaku H, Matsumoto M, Hayashi H (1994) High-level expression of Mycoplasma arginine deiminase in Escherichia coli and its efficient renaturation as an anti-tumor enzyme. Biotechnology 36(2):145–155

    CAS  Google Scholar 

  31. Cho WJ, Huang HJ (1998) An amperometric urea biosensor based on a polyaniline−perfluorosulfonated ionomer composite electrode. Anal Chem 70(18):3946–3951

    Article  CAS  Google Scholar 

  32. Strehlitz B, Gründig B, Kopinke H (2000) Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions. Anal Chim Acta 403(1–2):11–23

    Article  CAS  Google Scholar 

  33. Böger RH, Bode-Böger SM (2001) The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 41:79–99

    Article  Google Scholar 

  34. Reczkowski RS, Ash DE (1994) Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors. Arch Biochem Biophys 312:31–37

    Article  CAS  Google Scholar 

  35. Barsotti RJ (2001) Measurement of ammonia in blood. J Pediatr 138:S11–S19

    Article  CAS  Google Scholar 

  36. Nijveldt RJ, Siroen MPC, van der Hoven B, Teerlink T, Prins HA, Girbes ARJ, van Leeuwen PAM (2004) High plasma arginine concentrations in critically ill patients suffering from hepatic failure. Eur J Clin Nutr 58(4):587–593

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the “SMARTCANCERSENS” project from the European Community Seventh Framework Program under the Grant Agreement PIRSES-GA-2012-318053 and by the NATO Science for Peace (SFP) Project CBP.NUKR.SFPP 984173.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mykhailo T. Zhybak or Yaroslav I. Korpan.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhybak, M.T., Fayura, L.Y., Boretsky, Y.R. et al. Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase. Microchim Acta 184, 2679–2686 (2017). https://doi.org/10.1007/s00604-017-2290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2290-4

Keywords

Navigation