Advertisement

Microchimica Acta

, Volume 184, Issue 7, pp 2419–2428 | Cite as

Bottom-up assembly of silicon nanowire conductometric sensors for the detection of apolipoprotein A1, a biomarker for bladder cancer

  • Yen-Heng LinEmail author
  • Wei-Siao Lin
  • Jing-Chao Wong
  • Wei-Chieh Hsu
  • Yong-Sheng Peng
  • Chien-Lun Chen
Original Paper

Abstract

The authors describe highly sensitivity nanowire sensors that can be prepared by a bottom-up approach. The sensors were incorporated into microchannels and used for the quantitative conductometric detection of apolipoprotein A1 (APOA1), a bladder cancer protein biomarker. Silicon nanowires were placed in the gap between nickel electrodes by using dielectrophoretic forces, which improved the yield of the assembly. Then, the nanowires were clipped by another nickel layer to form a nickel/nanowire/nickel sandwich-like structure using photolithography and a lift-off process. The results show that this structure exhibits reduced contact resistance at the interface between the nickel layer and the silicon nanowires, which is an ohmic contact. Thus, a stable nanowire sensor was obtained. It was found that the contact resistance can be further decreased by using a hot plate annealing process. An SU-8 photoresist was used to insulate the electrodes to allow for applications in wet environments. An antibody against APOA1 was covalently conjugated to the surface of the silicon nanowires. Antibody conjugation was verified via the decrease in the conductance of the nanowires after conjugation. The sensor has a dynamic range that covers the 0.2 ng·mL−1 to 10 μg·mL−1 APOA1 concentration range and a detection limit of approximately 1 ng·mL−1.

Graphical abstract

Schematic presentation of silicon nanowire sensors prepared by a bottom-up approach with the aid of dielectriphoretic force. Antibodies were modified onto nanowires for protein detection. Surface potential was changed by protein attachment, which influences major carriers and thus changes the nanowire conductance.

Keywords

Dielectrophoresis Label-free detection Protein detection Microfluidics Nanoscale sensor Sandwich structure 

Notes

Acknowledgements

The authors thank Prof. Yit-Tsong Chen from National Taiwan University for providing the silicon nanowire and offering valuable suggestions. We also express our gratitude to the Ministry of Science and Technology of Taiwan and the Chang Gung Memorial Hospital for their funding support (MOST 103-2221-E-182-016-MY2, CMRPD2C0091, BMRPC01).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2288_MOESM1_ESM.docx (164 kb)
ESM 1 (DOCX 163 kb)

References

  1. 1.
    Chen YT, Chen HW, Domanski D, Smith DS, Liang KH, Wu CC, Chen CL, Chung T, Chen MC, Chang YS, Parker CE, Borchers CH, Yu JS (2012) Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers. J Proteome 75:3529–3545. doi: 10.1016/j.jprot.2011.12.031 CrossRefGoogle Scholar
  2. 2.
    Li C, Li H, Zhang T, Li J, Liu L, Chang J (2014) Discovery of apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis. Biochem Biophys Res Commun 446:1047–1052. doi: 10.1016/j.bbrc.2014.03.053 CrossRefGoogle Scholar
  3. 3.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292. doi: 10.1126/science.1062711 CrossRefGoogle Scholar
  4. 4.
    Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301. doi: 10.1038/nbt1138 CrossRefGoogle Scholar
  5. 5.
    Patolsky F, Zheng G, Lieber CM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1:1711–1724. doi: 10.1038/nprot.2006.227 CrossRefGoogle Scholar
  6. 6.
    Chen K-I, Li B-R, Chen Y-T (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6:131–154. doi: 10.1016/j.nantod.2011.02.001 CrossRefGoogle Scholar
  7. 7.
    Choi S, Park I, Hao Z, Holman H-YN, Pisano AP (2012) Quantitative studies of long-term stable, top-down fabricated silicon nanowire pH sensors. Appl Phys A Mater Sci Process 107:421–428. doi: 10.1007/s00339-011-6754-9 CrossRefGoogle Scholar
  8. 8.
    Agarwal A, Buddharaju K, Lao IK, Singh N, Balasubramanian N, Kwong DL (2008) Silicon nanowire sensor array using top–down CMOS technology. Sens Actuators Aphys 145–146:207–213. doi: 10.1016/j.sna.2007.12.019 CrossRefGoogle Scholar
  9. 9.
    Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39:R387–R406. doi: 10.1088/0022-3727/39/21/R01 CrossRefGoogle Scholar
  10. 10.
    Hu Y, Zhou J, Yeh PH, Li Z, Wei TY, Wang ZL (2010) Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv Mater 22:3327–3332. doi: 10.1002/adma.201000278 CrossRefGoogle Scholar
  11. 11.
    He JH, Ke JJ, Chang PH, Tsai KT, Yang PC, Chan IM (2012) Development of ohmic nanocontacts via surface modification for nanowire-based electronic and optoelectronic devices: ZnO nanowires as an example. Nano 4:3399–3404. doi: 10.1039/c2nr30688c Google Scholar
  12. 12.
    Jin S, Whang D, McAlpine MC, Friedman RS, Wu Y, Lieber CM (2004) Scalable interconnection and integration of nanowire devices without registration. Nano Lett 4:915–919. doi: 10.1021/nl049659j CrossRefGoogle Scholar
  13. 13.
    Zhang YL, Li J, To S, Zhang Y, Ye X, You L, Sun Y (2012) Automated nanomanipulation for nanodevice construction. Nanotechnology 23:065304. doi: 10.1088/0957-4484/23/6/065304 CrossRefGoogle Scholar
  14. 14.
    Li J, Zhang Y, To S, You L, Sun Y (2011) Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. ACS Nano 5:6661–6668. doi: 10.1021/nn202182p CrossRefGoogle Scholar
  15. 15.
    Lee SW, Jo G, Lee T, Lee YG (2009) Controlled assembly of In2O3 nanowires on electronic circuits using scanning optical tweezers. Opt Express 17:17491–17501. doi: 10.1364/OE.17.017491 CrossRefGoogle Scholar
  16. 16.
    Yan Z, Jureller JE, Sweet J, Guffey MJ, Pelton M, Scherer NF (2012) Three-dimensional optical trapping and manipulation of single silver nanowires. Nano Lett 12:5155–5161. doi: 10.1021/nl302100n CrossRefGoogle Scholar
  17. 17.
    Lee SH, Lee HJ, Ino K, Shiku H, Yao T, Matsue T (2009) Microfluid-assisted dielectrophoretic alignment and device characterization of single ZnO wires. J Phys Chem C 113:19376–19381. doi: 10.1021/jp908161v CrossRefGoogle Scholar
  18. 18.
    Freer EM, Grachev O, Duan X, Martin S, Stumbo DP (2010) High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat Nanotechnol 5:525–530. doi: 10.1038/nnano.2010.106 CrossRefGoogle Scholar
  19. 19.
    Wang Z, Kroener M, Woias P (2012) Design and fabrication of a thermoelectric nanowire characterization platform and nanowire assembly by utilizing dielectrophoresis. Sens Actuators Aphys 188:417–426. doi: 10.1016/j.sna.2012.02.047 CrossRefGoogle Scholar
  20. 20.
    Lin YH, Ho KS, Yang CT, Wang JH, Lai CS (2014) A highly flexible platform for nanowire sensor assembly using a combination of optically induced and conventional dielectrophoresis. Opt Express 22:13811–13824. doi: 10.1364/OE.22.013811 CrossRefGoogle Scholar
  21. 21.
    Pohl HA, Pollock K, Crane JS (1978) Dielectrophoretic force: a comparison of theory and experiment. J Biol Phys 6:133–160. doi: 10.1007/BF02328936 CrossRefGoogle Scholar
  22. 22.
    Timko BP, Cohen-Karni T, Qing Q, Tian B, Lieber CM (2010) Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, and tissue using nanowire device arrays. IEEE Trans Nanotechnol 9:269–280. doi: 10.1109/TNANO.2009.2031807 CrossRefGoogle Scholar
  23. 23.
    Lin TY, Li BR, Tsai ST, Chen CW, Chen CH, Chen YT, Pan CY (2013) Improved silicon nanowire field-effect transistors for fast protein-protein interaction screening. Lab Chip 13:676–684. doi: 10.1039/c2lc40772h CrossRefGoogle Scholar
  24. 24.
    Tang W, Dayeh SA, Picraux ST, Huang JY, Tu KN (2012) Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett 12:3979–3985. doi: 10.1021/nl3011676 CrossRefGoogle Scholar
  25. 25.
    Weber WM, Geelhaar L, Graham AP, Unger E, Duesberg GS, Liebau M, Pamler W, Chèze C, Riechert H, Lugli P, Kreupl F (2006) Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett 6:2660–2666. doi: 10.1021/nl0613858 CrossRefGoogle Scholar
  26. 26.
    Li BR, Chen CW, Yang WL, Lin TY, Pan CY, Chen YT (2013) Biomolecular recognition with a sensitivity-enhanced nanowire transistor biosensor. Biosens Bioelectron 45:252–259. doi: 10.1016/j.bios.2013.02.009 CrossRefGoogle Scholar
  27. 27.
    Lehermayr C, Mahler HC, Mäder K, Fischer S (2011) Assessment of net charge and protein-protein interactions of different monoclonal antibodies. J Pharm Sci 100:2551–2562. doi: 10.1002/jps.22506 CrossRefGoogle Scholar
  28. 28.
    Schasfoort RBM, Bergveld P, Kooyman RPH, Greve J (1990) Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor. Anal Chim Acta 238:323–329. doi: 10.1016/S0003-2670(00)80554-1 CrossRefGoogle Scholar
  29. 29.
    Hideshima S, Einati H, Nakamura T, Kuroiwa S, Shacham-Diamand Y, Osaka T (2010) Theoretical optimization method of buffer ionic concentration for protein detection using field effect transistors. J Electrochem Soc 157:J410–J414. doi: 10.1149/1.3491764 CrossRefGoogle Scholar
  30. 30.
    Lin YH, Chen YJ, Lai CS, Chen YT, Chen CL, Yu JS, Chang YS (2013) A negative-pressure-driven microfluidic chip for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay. Biomicrofluidics 7:24103. doi: 10.1063/1.4794974 CrossRefGoogle Scholar
  31. 31.
    Rosser CJ, Dai Y, Miyake M, Zhang G, Goodison S (2014) Simultaneous multi-analyte urinary protein assay for bladder cancer detection. BMC Biotechnol 14:24. doi: 10.1186/1472-6750-14-24 CrossRefGoogle Scholar
  32. 32.
    Wu D, Wang Y, Zhang Y, Ma H, Yan T, Du B, Wei Q (2016) Sensitive electrochemical immunosensor for detection of nuclear matrix protein-22 based on NH2-SAPO-34 supported Pd/Co nanoparticles. Sci Rep 6:24551. doi: 10.1038/srep24551 CrossRefGoogle Scholar
  33. 33.
    Chuang CH, Du YC, Wu TF, Chen CH, Lee DH, Chen SM, Huang TC, Wu HP, Shaikh MO (2016) Immunosensor for the ultrasensitive and quantitative detection of bladder cancer in point of care testing. Biosens Bioelectron 84:126–132. doi: 10.1016/j.bios.2015.12.103 CrossRefGoogle Scholar
  34. 34.
    Kim KW, Song J, Liu Q, Kee JS, Shin Y, Park MK (2012) Development of multiplexed silicon dual microring sensor for the detection of bladder cancer markers. In: Photonics global conference (PGC). IEEE, Piscataway, pp 1–4. doi: 10.1109/PGC.2012.6458029
  35. 35.
    Eissa S, Shawky SM, Matboli M, Mohamed S, Azzazy HME (2014) Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin Biochem 47:104–110. doi: 10.1016/j.clinbiochem.2013.10.022 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Yen-Heng Lin
    • 1
    • 2
    • 3
    Email author
  • Wei-Siao Lin
    • 1
  • Jing-Chao Wong
    • 2
  • Wei-Chieh Hsu
    • 1
  • Yong-Sheng Peng
    • 1
  • Chien-Lun Chen
    • 4
    • 5
  1. 1.Department of Electronic EngineeringChang Gung UniversityTaoyuanTaiwan
  2. 2.Graduate Institute of Medical MechatronicsChang Gung UniversityTaoyuanTaiwan
  3. 3.Department of Otolaryngology-Head & Neck SurgeryChang Gung Memorial HospitalTaoyuanTaiwan
  4. 4.Department of UrologyChang Gung Memorial HospitalTaoyuanTaiwan
  5. 5.College of MedicineChang Gung UniversityTaoyuanTaiwan

Personalised recommendations