Skip to main content
Log in

Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors present a voltammetric immunoassay for the quantification of the prostate specific antigen (PSA), a well-established tumor marker. Biotinylated anti- PSA antibodies were immobilized on the surface of a nano-TiO2-modified carbon paste electrode using specific interaction between streptavidin and biotin. Streptavidin itself was covalently grafted to the electrode surface via 4-aminobenzoic acid film. Signal transduction was then performed using polyclonal antibodies conjugated with horseradish peroxidase (HRP) and thionine. An amplified catalytic reduction current was observed in the presence of H2O2 because more than one polyclonal antibody linked to each antigen. Each step of the preparation of the immunosensor was monitored via electrochemical impedance spectroscopy. The electrode, if operated at a typical potential of 0.3 V vs. Ag/AgCl and using hexacyanoferrate as an electrochemical probe, exhibits linear responses in the 0.10 to 5.0 ng·mL−1 and 5.0 to 100 ng·mL−1 PSA concentration ranges, with a detection limit of 200 pg·mL−1. The accuracy of the biosensor was confirmed by analyzing a certified human serum sample, and this indicated that the immunosensor is well suited for the quantification of PSA.

Schematic presentation of a sandwich-type electrochemical immunosensor for the prostate specific antigen. It is based on the use of a carbon paste electrode, streptavidin and biotinylated monoclonal antibody. Signal transduction is the result of the catalytic reduction of thionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Srinivas PR, Kramer BS, Srivastava S (2001) Trends in biomarker research for cancer detection. Lancet Oncol 2(11):698–704

    Article  CAS  Google Scholar 

  2. Tothill IE (2009) Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 20(1):55–62

    Article  CAS  Google Scholar 

  3. Faraggi D, Kramar A (2000) Methodological issues associated with tumor marker development: biostatistical aspects. In: Urologic oncology: seminars and original investigations. Elsevier, Amsterdam

    Google Scholar 

  4. Szilvás Á, Blázovics A, Székely G, Dinya E, Fehér J, Mózsik G (2001) Comparative study between the free radicals and tumor markers in patients with gastrointestinal tumors. J Physiol Paris 95(1):247–252

    Article  Google Scholar 

  5. Liu Z-H, Zhang G-F, Chen Z, Qiu B, Tang D (2014) Prussian blue-doped nanogold microspheres for enzyme-free electrocatalytic immunoassay of p53 protein. Microchim Acta 181(5–6):581–588

    Article  CAS  Google Scholar 

  6. Xiong J, Wang W, Zhou Y, Kong W, Wang Z, Fu Z (2016) Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of staphylococcus protein A-modified magnetic beads to immunoglobulin G. Microchim Acta 183(4):1507–1512

    Article  CAS  Google Scholar 

  7. Röwer C, Vissers JP, Koy C, Kipping M, Hecker M, Reimer T, Gerber B, Thiesen H-J, Glocker MO (2009) Towards a proteome signature for invasive ductal breast carcinoma derived from label-free nanoscale LC-MS protein expression profiling of tumorous and glandular tissue. Anal Bioanal Chem 395(8):2443–2456

    Article  Google Scholar 

  8. Lee S, Hosokawa K, Kim S, Jeong OC, Lilja H, Laurell T, Maeda M (2016) Porous silicon microarray for simultaneous fluorometric immunoassay of the biomarkers prostate-specific antigen and human glandular kallikrein 2. Microchim Acta 183(12):3321–3327

    Article  CAS  Google Scholar 

  9. Miao L, Jiao L, Zhang J, Li H (2017) Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchim Acta 184(1):169–175

    Article  CAS  Google Scholar 

  10. Krivitsky V, Zverzhinetsky M, Patolsky F (2016) Antigen-dissociation from antibody-modified Nanotransistor sensor arrays as a direct biomarker detection method in unprocessed Biosamples. Nano Lett 16(10):6272–6281

    Article  CAS  Google Scholar 

  11. Choi JH, Kim HS, Choi J-W, Hong JW, Kim Y-K, Oh B-K (2013) A novel au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosens Bioelectron 49:415–419

    Article  CAS  Google Scholar 

  12. Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham M (2015) Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron 68:49–54

    Article  CAS  Google Scholar 

  13. Su L-C, Chen R-C, Li Y-C, Chang Y-F, Lee Y-J, Lee C-C, Chou C (2010) Detection of prostate-specific antigen with a paired surface plasma wave biosensor. Anal Chem 82(9):3714–3718

    Article  CAS  Google Scholar 

  14. Knopp D (2006) Immunoassay development for environmental analysis. Anal Bioanal Chem 385(3):425–427

    Article  CAS  Google Scholar 

  15. Zhao Y, Zheng Y, Kong R, Xia L, Qu F (2016) Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron 75:383–388

    Article  CAS  Google Scholar 

  16. Qu F, Sun H, Zhang S, You J (2012) Electrochemical sensing platform based on palladium modified ceria nanoparticles. Electrochim Acta 61:173–178

    Article  CAS  Google Scholar 

  17. Qu F, Li T, Yang M (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 26:3927–3931

    Article  CAS  Google Scholar 

  18. Qu F, Lu H, Yang M, Deng C (2011) Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement. Biosens Bioelectron 26:4810–4814

    Article  CAS  Google Scholar 

  19. Lin Y, Zhou Q, Lin Y, Tang D, Niessner R, Knopp D (2015) Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase–Thionine conjugate for ultrasensitive electrochemical immunoassay. Anal Chem 87(16):8531–8540

    Article  CAS  Google Scholar 

  20. Pavasupree S, Jitputti J, Ngamsinlapasathian S, Yoshikawa S (2008) Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders. Mat Res Bull 43:149–157

    Article  CAS  Google Scholar 

  21. Wild D (2005) The immunoassay handbook. Elsevier, Amsterdam

    Google Scholar 

  22. Xiao Y, Ju HX, Chen HY (1999) A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly (thionine) film on a monolayer modified electrode. Anal Chim Acta 391:299–306

    Article  CAS  Google Scholar 

  23. Ojeda I, López-Montero J, Moreno-Guzmán M, Janegitz B, González-Cortés A, Yáñez-Sedeño P, Pingarron J (2012) Electrochemical immunosensor for rapid and sensitive determination of estradiol. Anal Chim Acta 743:117–124

    Article  CAS  Google Scholar 

  24. Liu J, Cheng L, Liu B, Dong S (2000) Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multilayer films. Langmuir 16(19):7471–7476

    Article  CAS  Google Scholar 

  25. H-w R, Y-s K, Lee J-h, W-s S, N-s M, Hong H-G (2006) Immobilization of horseradish peroxidase to electrochemically deposited gold-nanoparticles on glassy carbon electrode for determination of H2O2. Bull Kor Chem Soc 27(5):672–678

    Article  Google Scholar 

  26. Paredes J, Villar-Rodil S, Martínez-Alonso A, Tascon J (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  Google Scholar 

  27. Nassar A-EF, Willis WS, Rusling JF (1995) Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem 67(14):2386–2392

    Article  CAS  Google Scholar 

  28. Pei R, Cheng Z, Wang E, Yang X (2001) Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16(6):355–361

    Article  CAS  Google Scholar 

  29. Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with azure a or ferrocenecarboxylic acid. Microchim Acta 182(15):2435–2442

    Article  CAS  Google Scholar 

  30. Sun XC, Lei C, Guo L, Zhou Y (2016) Sandwich immunoassay for the prostate specific antigen using a micro-fluxgate and magnetic bead labels. Microchim Chim Acta 183(8):2385–2393

    Article  CAS  Google Scholar 

  31. Tahmasebi F, Noorbakhsh A (2016) Sensitive electrochemical prostate specific antigen Aptasensor: effect of carboxylic acid functionalized carbon nanotube and glutaraldehyde linker. Electroanalysis 28(5):1134–1145

  32. Biscay J, González García MB, García AC (2015) Determination of Total PSA using magnetic beads and a re-usable screen printed carbon electrode Array. Electroanalysis 27(12):2773–2777

    Article  CAS  Google Scholar 

  33. Wang Y, Qu Y, Liu G, Hou X, Huang Y, Wu W, Wu K, Li C (2015) Electrochemical immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized with a high molecular-weight silk peptide. Microchim Acta 182(11–12):2061–2067

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tayebeh Shamspur or Maryam Mohamadi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biniaz, Z., Mostafavi, A., Shamspur, T. et al. Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase. Microchim Acta 184, 2731–2738 (2017). https://doi.org/10.1007/s00604-017-2284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2284-2

Keywords

Navigation