Skip to main content
Log in

A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescence assay is described for the fluorometric determination of dopamine (DA). It based on the use of silica-coated CdTe quantum dots (QD@SiO2). These were fabricated through a hydrothermal process. When DA is added to a solution of the QD@SiO2 and then oxidized by oxygen under catalytic action of tyrosinase to form dopamine quinone, the fluorescence of QD@SiO2 (acquired at excitation/emission wavelengths of 310/525 nm) decreases due to an electron transfer quenching processes. The assay has a linear calibration plot in the 0.05 to 30 μM DA concentration range and a 12.5 nM detection limit (at an S/N ratio of 3). The method was applied to the determination of DA in spiked human serum samples.

Schematic presentation of a fluorometric dopamine (DA) assay by using silica-coated CdTe QDs (QD@SiO2). DA is oxidized by oxygen under catalytic action of tyrosinase to form dopamine quinone, and this causes the quenching of fluorescence of QD@SiO2 at excitation/emission wavelengths of 310/525 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202

    Article  Google Scholar 

  2. Basu S, Dasgupta PS (2000) Dopamine, a neurotransmitter, influences the immune system. J Neuroimmunol 102:113–124

    Article  CAS  Google Scholar 

  3. Chaudhury D, Walsh JJ, Friedman AK et al (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamineneurons. Nature 493:532–536

    Article  CAS  Google Scholar 

  4. DeLong M, Wichmann T (2010) Changing views of basal ganglia circuits and circuit disorders. Clin EEG Neurosci 41:61–67

    Article  Google Scholar 

  5. Villoslada P, Oksenberg JR (2006) Neuroinformatics in clinical practice: are computers going to help neurological patients and their physicians? Future Neurol 1:159–170

    Article  CAS  Google Scholar 

  6. Park YH, Zhang X, Rubakhin SS, Sweedler JV (1999) Independent optimization of capillary electrophoresis separation and native fluorescence detection conditions for indolamine and catecholamine measurements. Anal Chem 71:4997–5002

    Article  CAS  Google Scholar 

  7. Fritzen-Garcia MB, Monteiroa FF, Cristofolini T et al (2013) Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection. Sensors Actuators B Chem 182:264–272

    Article  CAS  Google Scholar 

  8. An JH, Choi DK, Lee KJ, Choi JW (2015) Surface-enhanced Raman spectroscopy detection of dopamine by DNA targeting amplification assay in Parkisons’s model. Biosens Bioelectron 67:739–746

    Article  CAS  Google Scholar 

  9. Tang L, Li S, Han F et al (2015) SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron 71:7–12

    Article  CAS  Google Scholar 

  10. Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5:1226–1231

    Article  CAS  Google Scholar 

  11. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008

    Article  CAS  Google Scholar 

  12. Mercante LA, Pavinatto A, Iwaki LEO et al (2015) Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7:4784–4790

    Article  CAS  Google Scholar 

  13. Wabaidur SM, Alothman ZA, Alam SM, Lee SH (2012) Flow injection-chemiluminescence determination of dopamine using potassium permanganate and formaldehyde system. Spectrochim Acta A 96:221–225

    Article  CAS  Google Scholar 

  14. Yusoff N, Pandikumar A, Ramaraj R, Ngee LH, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114

    Article  CAS  Google Scholar 

  15. Quan DP, Tuyen DP, Lam TD, Tram PTN, Binh NH, Viet PH (2011) Electrochemically selective determination of dopamine in the presence of ascorbic and uric acids on the surface of the modified nafion/single wall carbon nanotube/poly(3-methylthiophene) glassy carbon electrodes. Colloids Surf B 88:764–770

    Article  CAS  Google Scholar 

  16. Wu D, Li H, Xue X, Fan H, Xin Q, Wei Q (2013) Sensitive and selective determination of dopamine by electrochemical sensor based on molecularly imprinted electropolymerization of o-phenylenediamine. Anal Methods 5:1469–1473

    Article  CAS  Google Scholar 

  17. Liu SF, Zhang X, Yu YM, Zou GZ (2014) A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters. Anal Chem 86:2784–2788

    Article  CAS  Google Scholar 

  18. Wang X, Sheng PT, Zhou LP, Tong X, Shi L, Cai QY (2014) Fluorescence immunoassay of octachlorostyrene based on förster resonance energy transfer between CdTe quantum dots and rhodamine B. Biosens Bioelectron 60:52–56

    Article  CAS  Google Scholar 

  19. Ghadiali JE, Cohen BE, Stevens MM (2010) Protein kinase-actuated resonance energy transfer in quantum dot-peptide conjugates. ACS Nano 4:4915–4919

    Article  CAS  Google Scholar 

  20. Zhang Y, Li Y, Yan XP (2009) Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids. Anal Chem 81:5001–5007

    Article  CAS  Google Scholar 

  21. Zhang Z, Li JH, Wang XY, Shen DZ, Chen LX (2015) Quantum dots based mesoporous structured imprinting microspheres for the sensitive fluorescent detection of phycocyanin. ACS Appl Mater Interfaces 7:9118–9127

    Article  CAS  Google Scholar 

  22. Li HH, Zhu HJ, Sun MT, Yan YH, Zhang K, Huang DJ, Wang SH (2015) Manipulating the surface chemistry of quantum dots for sensitive ratiometric fluorescence detection of sulfur dioxide. Langmuir 31:8667–8671

    Article  CAS  Google Scholar 

  23. Ai XZ, Ma Q, Su XG (2012) Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots. Microchim Acta 180(3–4):269–277

    Google Scholar 

  24. Xiong HY, Guo CH, Liu P, Xu W, Zhang XH, Wang SF (2014) Visual discrimination of phenolic group β2-agonists and the ultrasensitive identification of their oxidation products by use of a tyrosinase-based catalytic reaction. Anal Chem 86:4729–4738

    Article  CAS  Google Scholar 

  25. Ma W, Liu HT, Long YY (2015) Monitoring dopamine quinone-induced dopaminergic neurotoxicity using dopamine functionalized quantum dots. ACS Appl Mater Interfaces 7:14352–14358

    Article  CAS  Google Scholar 

  26. Yan X, Li HX, Zheng WS, Su XG (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87:8904–8909

    Article  CAS  Google Scholar 

  27. Shavel A, Gaponik N, Eychmüller Q (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110:19280–19284

    Article  CAS  Google Scholar 

  28. Qiu CX, Xing YH, Yang WM, Zhou ZP, Wang YC, Liu H, Xu WZ (2015) Surface molecular imprinting on hybrid SiO2-coated CdTe nanocrystals for selective optosensing of bisphenol A and its optimal design. Appl Surf Sci 345:405–417

  29. Zhai WY, Wang CX, Yu P, Wang YX, Mao LQ (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213

    Article  CAS  Google Scholar 

  30. Cui R, Gu YP, Bao L et al (2012) Near-infrared electrogenerated chemiluminescence of ultrasmall Ag2Se quantum dots for the detection of dopamine. Anal Chem 84:8932–8935

    Article  CAS  Google Scholar 

  31. Zhao D, Song HJ, Hao LY, Liu X, Zhang LC, Lv Y (2013) Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta 107:133–139

    Article  CAS  Google Scholar 

  32. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Li CM (2016) Synthesis of nitrogen- and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183(9):2491–2500

    Article  CAS  Google Scholar 

  33. Qian CG, Zhu S, Feng PJ, Chen YL et al (2015) Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl Mater Interfaces 7:18581–18589

    Article  CAS  Google Scholar 

  34. Qu KG, Wang JS, Ren JS, Qu XG (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem Eur J 19:7243–7249

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21375033, 11674085, 31501568), the Natural Science Fund for Creative Research Groups of Hubei Province of China (Nos. 2011CDA111, 2014CFA015), the Key Project of the Natural Science Foundation of Hubei Province (No. 2015CFA124) and the Program for Excellent Youth Scholars of Innovative Research Team by Hubei Provincial Department of Education (No. T201101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-hua Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 686 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Chen, Mm., Zhang, Hq. et al. A simple and sensitive fluorometric dopamine assay based on silica-coated CdTe quantum dots. Microchim Acta 184, 3189–3196 (2017). https://doi.org/10.1007/s00604-017-2270-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2270-8

Keywords

Navigation