Microchimica Acta

, Volume 184, Issue 7, pp 2403–2409 | Cite as

Headspace single-drop microextraction coupled to microchip-photothermal lens microscopy for highly sensitive determination of captopril in human serum and pharmaceuticals

  • Atefeh Abbasi-Ahd
  • Nader ShokoufiEmail author
  • Kazem Kargosha
Original Paper


The authors describe the combination of headspace single drop microextraction with microchip-photothermal lens microscopy (HS-SDME/MC-PTLM) as a new method for highly sensitive determination of the angiotensin-converting enzyme inhibitor captopril. A single drop of a colloidal solution of gold nanoparticles is applied to the headspace. This then acts as both acceptor phase and labeling agent for the thiol groups of captopril. Following extraction of captopril, the drop is injected into a glass microchip and detected by PTLM using a 50-mW diode solid-state laser with an emission line of 532 nm. The interaction of captopril and GNPs reduces the surface plasmon resonance of GNPs and as a consequence the PTLM signal of GNPs decreases. At the optimum condition, the PTLM signal increases linearly in the 0.5–70.0 nM captopril concentration range, and the detection limit (at an S/N ratio of 3) is 0.31 nM. This is much better than those of previously reported methods. The method was successfully applied to the determination of captopril in (spiked) human serum and in pharmaceutical samples.

Graphical abstract

A combination of gold nanoparticle (GNP) assisted headspace single drop microextraction with microchip-photo thermal lens microscopy (HS-SDME/MC-PTLM) was developed for determination of captopril. The thiol group of extracted captopril bound to the surface of GNPs and reduced the PTLM signal of that.


ACE inhibitor Angiotensin converting enzyme Gold nanoparticles Labeling agent Microchip Surface plasmon resonance Thermal lens microscopy Dynamic light scattering 



The authors are grateful for the support of the Iran National Science Foundation (INSF).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2266_MOESM1_ESM.pdf (356 kb)
ESM 1 (PDF 356 kb)


  1. 1.
    Florey K (1992) Analytical profiles of drug substances and excipients, vol 20. Academic press, San DiegoGoogle Scholar
  2. 2.
    Romankiewicz J, Brogden R, Heel R, Speight T, Avery G (1983) Captopril: an update review of its pharmacological properties and therapeutic efficacy in congestive heart failure. Drugs 25(1):6–40CrossRefGoogle Scholar
  3. 3.
    Davis R, Ribner HS, Keung E, Sonnenblick EH, LeJemtel TH (1979) Treatment of chronic congestive heart failure with captopril, an oral inhibitor of angiotensin-converting enzyme. N Engl J Med 301(3):117–121CrossRefGoogle Scholar
  4. 4.
    Tzanavaras PD, Themelis DG, Economou A, Theodoridis G (2003) Flow and sequential injection manifolds for the spectrophotometric determination of captopril based on its oxidation by Fe(III). Microchim Acta 142(1–2):55–62CrossRefGoogle Scholar
  5. 5.
    Suarez WT, Madi AA, Figueiredo-Filho L, Fatibello-Filho O (2007) Flow-injection spectrophotometric system for captopril determination in pharmaceuticals. J Braz Chem Soc 18(6):1215–1219CrossRefGoogle Scholar
  6. 6.
    Hormozi-Nezhad MR, Bagheri H, Bohloul A, Taheri N, Robatjazi H (2013) Highly sensitive turn-on fluorescent detection of captopril based on energy transfer between fluorescein isothiocyanate and gold nanoparticles. J Lumin 134:874–879CrossRefGoogle Scholar
  7. 7.
    Karimi A, Alizadeh N (2009) Rapid analysis of captopril in human plasma and pharmaceutical preparations by headspace solid phase microextraction based on polypyrrole film coupled to ion mobility spectrometry. Talanta 79(2):479–485CrossRefGoogle Scholar
  8. 8.
    Li B, Zhang Z, Wu M (2001) Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver(II) as the oxidant. Microchem J 70(2):85–91CrossRefGoogle Scholar
  9. 9.
    Pulgarín JAM, Bermejo LFG, López PF (2005) Sensitive determination of captopril by time-resolved chemiluminescence using the stopped-flow analysis based on potassium permanganate oxidation. Anal Chim Acta 546(1):60–67CrossRefGoogle Scholar
  10. 10.
    Chen Q, Bai S, Lu C (2012) The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence. Talanta 89:142–148CrossRefGoogle Scholar
  11. 11.
    Wang L, Yang X-F, Zhao M (2009) A 4-methylumbelliferone-based fluorescent probe for the sensitive detection of captopril. J Fluoresc 19(4):593–599CrossRefGoogle Scholar
  12. 12.
    Schmidt E Jr, Melchert WR, Rocha FRP (2009) Flow-injection iodimetric determination of captopril in pharmaceutical preparations. J Braz Chem Soc 20(2):236–242CrossRefGoogle Scholar
  13. 13.
    De Liu Z, Huang CZ, Li YF, Long YF (2006) Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example. Anal Chim Acta 577(2):244–249CrossRefGoogle Scholar
  14. 14.
    Mazurek S, Szostak R (2006) Quantitative determination of captopril and prednisolone in tablets by FT-Raman spectroscopy. J Pharm Biomed Anal 40(5):1225–1230CrossRefGoogle Scholar
  15. 15.
    Shahrokhian S, Karimi M, Khajehsharifi H (2005) Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sensors Actuators B Chem 109(2):278–284. doi: 10.1016/j.snb.2004.12.059 CrossRefGoogle Scholar
  16. 16.
    Karimi-Maleh H, Ensafi AA, Allafchian AR (2010) Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J Solid State Electrochem 14(1):9–15CrossRefGoogle Scholar
  17. 17.
    Vitoreti ABF, Abrahão O, da Silva Gomes RA, Salazar-Banda GR, Oliveira RTS (2014) Electroanalytical determination of captopril in pharmaceutical formulations using boron-doped diamond electrodes. Int J Electrochem Sci 9:1044–1054Google Scholar
  18. 18.
    Liu T-T, Xiang L-L, Wang J-L, Chen D-Y (2015) Application of capillary electrophoresis-frontal analysis for comparative evaluation of the binding interaction of captopril with human serum albumin in the absence and presence of hydrochlorothiazide. J Pharm Biomed Anal 115:31–35CrossRefGoogle Scholar
  19. 19.
    Huang T, He Z, Yang B, Shao L, Zheng X, Duan G (2006) Simultaneous determination of captopril and hydrochlorothiazide in human plasma by reverse-phase HPLC from linear gradient elution. J Pharm Biomed Anal 41(2):644–648. doi: 10.1016/j.jpba.2005.12.007 CrossRefGoogle Scholar
  20. 20.
    Kuśmierek K, Bald E (2007) A simple liquid chromatography method for the determination of captopril in urine. Chromatographia 66(1–2):71–74CrossRefGoogle Scholar
  21. 21.
    Chen W-T, Chiang C-K, Lin Y-W, Chang H-T (2010) Quantification of captopril in urine through surface-assisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard. J Am Soc Mass Spectrom 21(5):864–867CrossRefGoogle Scholar
  22. 22.
    Sudhir P-R, Wu H-F, Zhou Z-C (2005) Identification of peptides using gold nanoparticle-assisted single-drop microextraction coupled with AP-MALDI mass spectrometry. Anal Chem 77(22):7380–7385CrossRefGoogle Scholar
  23. 23.
    Lemos VA, Vieira US (2013) Single-drop microextraction for the determination of manganese in seafood and water samples. Microchim Acta 180(5–6):501–507CrossRefGoogle Scholar
  24. 24.
    Zhao F, Lu S, Du W, Zeng B (2009) Ionic liquid-based headspace single-drop microextraction coupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim Acta 165(1–2):29–33CrossRefGoogle Scholar
  25. 25.
    Vidal L, Canals A, Kalogerakis N, Psillakis E (2005) Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. J Chromatogr A 1089(1):25–30CrossRefGoogle Scholar
  26. 26.
    Kaykhaii M, Noorinejad S (2014) Salt saturated single drop microextraction of gold from water samples and its determination by graphite furnace atomic absorption spectrometry. J Anal At Spectrom 29(5):875–879CrossRefGoogle Scholar
  27. 27.
    Pena-Pereira F, Lavilla I, Bendicho C (2009) Headspace single-drop microextraction with in situ stibine generation for the determination of antimony(III) and total antimony by electrothermal-atomic absorption spectrometry. Microchim Acta 164(1–2):77–83CrossRefGoogle Scholar
  28. 28.
    Bialkowski S (1996) Photothermal spectroscopy methods for chemical analysis, vol 134. John Wiley & Sons, New YorkGoogle Scholar
  29. 29.
    Shokoufi N, Madarshahian S (2012) Thermal lens spectrometry: techniques and instrumentation. LAP Lambert Academic Publishing, SaarbrückenGoogle Scholar
  30. 30.
    Mawatari K, Ohashi T, Ebata T, Tokeshi M, Kitamori T (2011) Thermal lens detection device. Lab Chip 11(17):2990–2993CrossRefGoogle Scholar
  31. 31.
    Kitamori T, Tokeshi M, Hibara A, Sato K (2004) Peer reviewed: thermal lens microscopy and microchip chemistry. Anal Chem 76(3):52-ACrossRefGoogle Scholar
  32. 32.
    Shokoufi N, Yoosefian J (2016) Selective determination of Sm(III) in lanthanide mixtures by thermal lens microscopy. J Ind Eng Chem 35:153–157CrossRefGoogle Scholar
  33. 33.
    Franko M (2008) Thermal lens spectrometric detection in flow injection analysis and separation techniques. Appl Spectrosc Rev 43(4):358–388CrossRefGoogle Scholar
  34. 34.
    Satoa K, Kitamorib T (2004) Integration of an immunoassay system into a microchip for high-throughput assay. J Nanosci Nanotechnol 4(6):575–579CrossRefGoogle Scholar
  35. 35.
    Tokeshi M, Yamaguchi J, Hattori A, Kitamori T (2005) Thermal lens micro optical systems. Anal Chem 77(2):626–630CrossRefGoogle Scholar
  36. 36.
    Zhong Z, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A (2004) The surface chemistry of Au colloids and their interactions with functional amino acids. J Phys Chem B 108(13):4046–4052CrossRefGoogle Scholar
  37. 37.
    Henry CS (2006) Microchip capillary electrophoresis: methods and protocols, Humana Press Inc, TotowaGoogle Scholar
  38. 38.
    Proskurnin MA, Tokeshi M, Slyadnev MN, Kitamori T (2002) Optimization of the optical-scheme design for photothermal-lens microscopy in microchips. Anal Sci/Suppl 17:s454–s457Google Scholar
  39. 39.
    Proskurnin MA, Slyadnev MN, Tokeshi M, Kitamori T (2003) Optimisation of thermal lens microscopic measurements in a microchip. Anal Chim Acta 480(1):79–95CrossRefGoogle Scholar
  40. 40.
    Smirnova A, Proskurnin MA, Mawatari K, Kitamori T (2012) Desktop near-field thermal-lens microscope for thermo-optical detection in microfluidics. Electrophoresis 33(17):2748–2751CrossRefGoogle Scholar
  41. 41.
    Liu M, Novak U, Plazl I, Franko M (2014) Optimization of a thermal lens microscope for detection in a microfluidic chip. Int J Thermophys 35(11):2011–2022CrossRefGoogle Scholar
  42. 42.
    Tamaki E, Hibara A, Tokeshi M, Kitamori T (2003) Microchannel-assisted thermal-lens spectrometry for microchip analysis. J Chromatogr A 987(1):197–204CrossRefGoogle Scholar
  43. 43.
    Zhang F, Zeng L, Zhang Y, Wang H, Wu A (2011) A colorimetric assay method for Co 2+ based on thioglycolic acid functionalized hexadecyl trimethyl ammonium bromide modified Au nanoparticles (NPs). Nano 3(5):2150–2154Google Scholar
  44. 44.
    USP (2000) United States Pharmacopeial convention Inc, 24th edn. The United States Pharmacopeia, RockvilleGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Atefeh Abbasi-Ahd
    • 1
  • Nader Shokoufi
    • 1
    Email author
  • Kazem Kargosha
    • 1
  1. 1.Chemistry & Chemical Engineering Research Center of Iran (CCERCI)TehranIran

Personalised recommendations