Skip to main content
Log in

A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Reduced graphene oxide hollow microspheres (rGO HMS) were encapsulated with gold nanoparticles (AuNPs) by spray drying. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and Raman spectroscopy were used to characterize the AuNP/rGO HMS. When placed on a glassy carbon electrode (GCE), it exhibits excellent electrochemical catalytic properties towards the oxidation of nitrite. The electrocatalytic properties were studied using various electrochemical techniques. Compared to AuNP-decorated graphene sheet based electrodes documented in the literature, the one presented here provides a larger surface area. This enhances the catalytic activity towards nitrite. The electrode, typically operated at a working potential of 0.82 V (vs. SCE), has a linear response in the 5.0 μM to 2.6 mM nitrate concentration range, and a detection limit as low as 0.5 μM (at an S/N ratio of 3).

Schematic presentation of the synthesis of graphene hollow microspheres encapsulated with of gold nanoparticles (AuNP/rGO HMS) through a spray drying technique. The material was applied to the electrochemical determination of nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang T, Xu J, Lu L, Zhu X, Gao Y, Xing H, Yu Y, Ding W, Liu Z (2016) Copper nanoparticle/graphene oxide/single wall carbon nanotube hybrid materials as electrochemical sensing platform for nonenzymatic glucose detection. J Electroanal Chem 761:118–124

    Article  CAS  Google Scholar 

  2. Liu Z, Xu J, Yue R, Yang T, Gao L (2016) Facile one-pot synthesis of au–PEDOT/rGO nanocomposite for highly sensitive detection of caffeic acid in red wine sample. Electrochim Acta 196:1–12

    Article  CAS  Google Scholar 

  3. Liu Z, Lu B, Gao Y, Yang T, Yue R, Xu J, Gao L (2016) Facile one-pot preparation of Pd–au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection. RSC Adv 6:89157–89166

    Article  CAS  Google Scholar 

  4. Xu J, Wang Y, Hu S (2016) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim Acta 184:1–44

    Article  CAS  Google Scholar 

  5. Jiao S, Jin J, Wang L (2015) One-pot preparation of au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensor Actuat B-Chem 208:36–42

    Article  CAS  Google Scholar 

  6. Huang SS, Liu L, Mei LP, Zhou JY, Guo FY, Wang AJ, Feng JJ (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797

    Article  CAS  Google Scholar 

  7. Zhang Y, Liu Y, He J, Pang P, Gao Y, Hu Q (2013) Electrochemical behavior of graphene/Nafion/azure I/au nanoparticles composites modified glass carbon electrode and its application as nonenzymatic hydrogen peroxide sensor. Electrochim Acta 90:550–555

    Article  CAS  Google Scholar 

  8. Canbay E, Şahin B, Kıran M, Akyilmaz E (2015) MWCNT-cysteamine-Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite. Bioelectrochemistry 101:126–131

    Article  CAS  Google Scholar 

  9. Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  10. Zhuo Q, Ma Y, Gao J, Zhang P, Xia Y, Tian Y, Sun X, Zhong J, Sun X (2013) Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg Chem 52:3141–3147

    Article  CAS  Google Scholar 

  11. Sharma P, Darabdhara G, Reddy TM, Borah A, Bezboruah P, Gogoi P, Hussain N, Sengupta P, Das MR (2013) Synthesis, characterization and catalytic application of au NPs-reduced graphene oxide composites material: an eco-friendly approach. Catal Commun 40:139–144

    Article  CAS  Google Scholar 

  12. Xia X, Wang Y, Ruditskiy A, Xia Y (2014) Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv Mater 45:6313

    Google Scholar 

  13. Sarma SD (2010) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:125411

    Google Scholar 

  14. Fan W, Gao W, Zhang C, Weng WT, Pan J, Liu T (2012) Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes. J Mater Chem 22:25108–25115

    Article  CAS  Google Scholar 

  15. Schüth F (2016) Encapsulation strategies in energy conversion materials. Chem Mater 26:423–434

    Article  Google Scholar 

  16. Shen Y, Fang Q, Chen B (2015) Environmental applications of three-dimensional graphene-based macrostructures: adsorption, transformation, and detection. Environ Sci Technol 49:67–84

    Article  CAS  Google Scholar 

  17. Li J, Xie J, Gao L, Li CM (2015) Au nanoparticles@3-D graphene hydrogel nanocomposite to synergistically boost in situ detection sensitivity towards cell-released nitric oxide. ACS Appl Mater Interfactes 7:2726–2734

    Article  CAS  Google Scholar 

  18. Ma Y, Sun L, Huang W, Zhang L, Zhao J, Fan Q, Huang W (2011) Three-dimensional nitrogen-doped carbon nanotubes/graphene structure used as a metal-free Electrocatalyst for the oxygen reduction reaction. J Phys Chem C 115:24592–24597

    Article  CAS  Google Scholar 

  19. Lee J, Kim SM, Lee IS (2014) Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 9:631–667

    Article  CAS  Google Scholar 

  20. Liu H, Wang J, Feng Z, Lin Y, Zhang L, Su D (2015) Facile synthesis of au nanoparticles embedded in an ultrathin hollow graphene Nanoshell with robust catalytic performance. Small 11:5059–5064

    Article  CAS  Google Scholar 

  21. Poe SL, Kobaslija M, Mcquade DT (2007) Mechanism and application of a microcapsule enabled multicatalyst reaction. JAm Chem Soc 129:9216–9221

    Article  CAS  Google Scholar 

  22. Choi J, Yang HY, Kim HJ, Son SU (2010) Organometallic hollow spheres bearing bis(N-heterocyclic carbene)-palladium species: catalytic application in three-component Strecker reactions. Angew Chem Int Ed 49:7718–7722

    Article  CAS  Google Scholar 

  23. Liu R, Jin R, An J, Zhao Q, Cheng T, Liu G (2014) Hollow-Shell-structured Nanospheres: a recoverable heterogeneous catalyst for rhodium-catalyzed tandem reduction/Lactonization of ethyl 2-Acylarylcarboxylates to chiral Phthalides. Chem Asian J 9:1388–1394

    Article  CAS  Google Scholar 

  24. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications. Adv Mater 26:3176

    Article  CAS  Google Scholar 

  25. Sasidharan M, Senthil C, Kumari V, Bhaumik A (2015) The dual role of micelles as templates and reducing agents for the fabrication of catalytically active hollow silver nanospheres. Chem Commun 51:733–736

    Article  Google Scholar 

  26. Drisko GL, Carreterogenevrier A, Perrot A, Gich M, Gàzquez J, Rodriguezcarvajal J, Favre L, Grosso D, Boissière C, Sanchez C (2015) Crystallization of hollow mesoporous silica nanoparticles. Chem Commun 51:4164–4167

    Article  CAS  Google Scholar 

  27. Fang X, Liu Z, Hsieh MF, Chen M, Liu P, Chen C, Zheng N (2012) Hollow mesoporous Aluminosilica spheres with perpendicular pore channels as catalytic Nanoreactors. ACS Nano 6:4434–4444

    Article  CAS  Google Scholar 

  28. Li J, Liang X, Ji BJ, Lee I, Yin Y, Zaera F (2013) Mass transport across the porous oxide shells of Core-Shell and yolk-Shell nanostructures in liquid phase. J Phys Chem C 117:20043–20053

    Article  CAS  Google Scholar 

  29. Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang GH, Schüth F (2016) Hollow Nano- and Microstructures as catalysts. Chem Rev 116:14056–14119

    Article  CAS  Google Scholar 

  30. Qi J, Zhao K, Li G, Gao Y, Zhao H, Yu R, Tang Z (2014) Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation. Nano 6:4072–4077

    CAS  Google Scholar 

  31. Tabrizi MA, Varkani JN (2014) Green synthesis of reduced graphene oxide decorated with gold nanoparticles and its glucose sensing application. Sensor Actuat B-Chem 202:475

    Article  Google Scholar 

  32. Anusha JR, Kim HJ, Fleming AT, Das SJ, Yu KH, Kim BC, Raj CJ (2014) Simple fabrication of ZnO/Pt/chitosan electrode for enzymatic glucose biosensor. Sensor Actuat B-Chem 202:827–833

    Article  CAS  Google Scholar 

  33. Zhang Y, Yang A, Zhang X, Zhao H, Li X, Yuan Z (2013) Highly selective and sensitive biosensor for cysteine detection based on in situ synthesis of gold nanoparticles/graphene nanocomposites. Colloid Surface A 436:815–822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China grant (No. 21475076), International S&T collaboration Program of China (No. 2015DFA50060), Innovation and achievement transformation projects of Shandong Province(NO. 2014ZZCCX01401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Hou.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 746 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yuan, Y., Zheng, Y. et al. A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite. Microchim Acta 184, 1565–1572 (2017). https://doi.org/10.1007/s00604-017-2264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2264-6

Keywords

Navigation