Advertisement

Microchimica Acta

, Volume 184, Issue 8, pp 2759–2766 | Cite as

Three-dimensional carbon nanofiber derived from bacterial cellulose for use in a Nafion matrix on a glassy carbon electrode for simultaneous voltammetric determination of trace levels of Cd(II) and Pb(II)

  • Danfeng Qin
  • Shanshuang Gao
  • Le Wang
  • Hangjia Shen
  • Nuerbiya Yalikun
  • Parviz Sukhrobov
  • Thomas Wagberg
  • Yujie Zhao
  • Xamxikamar Mamat
  • Guangzhi Hu
Original Paper

Abstract

The authors describe the preparation of carbon nanofibers (CNFs) with a three-dimensional network structure by one-step carbonization of bacterial cellulose at 800 °C. The 3D CNFs wrapped with Nafion polymer were cast on a glassy carbon electrode (GCE) which then enables sensitive detection of Cd(II) and Pb(II). Under optimized conditions and at typical stripping peaks of around −0.80 and −0.55 V (vs Ag/AgCl), the electrode exhibits high sensitivity and a wide analytical range of 2–100 μg·L−1 for both Cd(II) and Pb(II). The detection limits are 0.38 μg·L−1 for Cd(II) and 0.33 μg·L−1 for Pb(II), respectively. The modified GCE was successfully employed to the determination of trace amounts of Cd(II) and Pb(II) in both tap water and waste water.

Graphical abstract

A three-dimensional carbon nanofiber network wrapped with Nafion polymer was employed to prepare a chemically modified electrode, which is shown to enable simultaneous detection of trace amounts of Cd(II) and Pb(II) in both tap water and waste water.

Keywords

Green material Bacterial fermentation Freeze drying Carbon materials Immobilization Scanning electron microscopy X-ray photoelectron spectroscopy Electroanalysis Heavy metals Water analysis 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (21505154 and 21677171), Xinjiang International Science and Technology Cooperation Project (20166010), 1000-Talent Program (Recruitment Program of Global Expert, In Chinese: Qian-Ren-Ji-Hua), and Project supported by the Special Scientific Research Fund of Agricultural Public Welfare Profession of China (21403014-1). TW acknowledge support from the Artificial Leaf Project Umeå (K&A Wallenberg foundation) and the Swedish Research Council (2013-5252).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2260_MOESM1_ESM.docx (148 kb)
ESM 1 (DOCX 147 kb)

References

  1. 1.
    Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev 111(5):3433–3458CrossRefGoogle Scholar
  2. 2.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Sabounchei SJ, Sarlakifar M (2015) Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal Chim Acta 870:56–66CrossRefGoogle Scholar
  3. 3.
    Çelik GK, Üzdürmez AF, Erkal A, Kılıç E, Solak AO, Üstündağ Z (2016) 3,8-DiaminobenzoCinnoline Derivatived graphene oxide modified graphene oxide sensor for the Voltammetric determination of Cd2+ and Pb2+. Electrocatalysis 7(3):207–214CrossRefGoogle Scholar
  4. 4.
    Cerovac S, Guzsvany V, Konya Z, Ashrafi AM, Svancara I, Roncevic S, KukoveczA DB, Vytras K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649CrossRefGoogle Scholar
  5. 5.
    Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sensors Actuators B Chem 216:384–393CrossRefGoogle Scholar
  6. 6.
    Chen L, Huang Z, Liang H, Gao H, Yu S (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24(32):5104–5111CrossRefGoogle Scholar
  7. 7.
    Zhu W, Yue X, Dua J, Zhang Y, Zhang W, Yu S, Wang Y, Zhang D, Wang J (2016) Electrochemically coreduced 3D GO C60 nanoassembly as an efficient nanocatalyst for electrochemical detection of bisphenol S. Electrochim Acta 188:85–90CrossRefGoogle Scholar
  8. 8.
    Yue X, Song W, Zhu W, Wang J, Wang Y (2015) In situ surface electrochemical co-reduction route towards controllable construction of AuNPs/ERGO electrochemical sensing platform for simultaneous determination of BHA and TBHQ. Electrochim Acta 182:847–855CrossRefGoogle Scholar
  9. 9.
    Joshi A, Nagaiah TC (2015) Nitrogen-doped carbon nanotubes for sensitive and selective determination of heavy metals. RSC Adv 5(127):105119–105127CrossRefGoogle Scholar
  10. 10.
    Keawkim K, Chuanuwatanakul S, Chailapakul O, Motomizu S (2013) Determination of lead and cadmium in rice samples by sequential injection/anodic stripping voltammetry using a bismuth film/crown ether/Nafion modified screen-printed carbon electrode. Food Control 31(1):14–21CrossRefGoogle Scholar
  11. 11.
    Li L, Zhou Y, Li Z, Ma Y, Pei C (2014) One step fabrication of Mn3O4/carbonated bacterial cellulose with excellent catalytic performance upon ammonium perchlorate decomposition. Mater Res Bull 60:802–807CrossRefGoogle Scholar
  12. 12.
    Li W, Zhang Z, Kong B, Feng S, Wang J, Wang L, Yang J, Zhang F, Wu P, Zhao D (2013) Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. Angew Chem 52(31):8151–8155CrossRefGoogle Scholar
  13. 13.
    Liang H, Wu Z, Chen L, Li C, Yu S (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376CrossRefGoogle Scholar
  14. 14.
    Zhu W, Liu W, Li T, Yue X, Liu T, Zhan W, Yu S, Zhang D, Wang J (2014) Facile green synthesis of graphene-au nanorod nanoassembly for on-line extraction and sensitive stripping analysis of methyl parathion. Electrochim Acta 146:419–429CrossRefGoogle Scholar
  15. 15.
    Liu Y, Lu T, Sun Z, Chua D, Pan L (2015) Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization. J Mater Chem A 3(16):8693–8700CrossRefGoogle Scholar
  16. 16.
    Madhu R, Sankar KV, Chen S, Selvan RK (2014) Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. RSC Adv 4(3):1225–1233CrossRefGoogle Scholar
  17. 17.
    Matovic V, Buha A, Ethukic CD, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 78:130–140CrossRefGoogle Scholar
  18. 18.
    Meng F, Li L, Wu Z, Zhong H, Li J, Yan J (2014) Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst. Chin J Catal 35(6):877–883CrossRefGoogle Scholar
  19. 19.
    Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16CrossRefGoogle Scholar
  20. 20.
    Perez RC, Serrano N, Diaz JM, Arino C, Esteban M (2015) Penicillamine-modified sensor for the voltammetric determination of cd(II) and Pb(II) ions in natural samples. Talanta 144:569–573CrossRefGoogle Scholar
  21. 21.
    Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors Actuators B Chem 207:526–534CrossRefGoogle Scholar
  22. 22.
    Shen H, Qin D, Li Y, Li S, Yang C, Yuan Q, Wagberg T, Hu G (2016) In situ Magnesiothermal synthesis of mesoporous MgO/OMC composite for sensitive detection of lead ions. Electroanalysis 28:1–9CrossRefGoogle Scholar
  23. 23.
    Sioda RE, Frankowska B (2008) Voltammetric oxidation of naphthalene derivatives. J Electroanal Chem 612(1):147–150CrossRefGoogle Scholar
  24. 24.
    Hu G, Nitze F, Sharifi T, Barzegar HR, Wagberg T (2012) Self-assembled palladium nanocrystals on helical carbon nanofibers as enhanced electrocatalysts for electro-oxidation of small molecules. J Mater Chem 22:85541–88548Google Scholar
  25. 25.
    Hu G, Nitze F, Gracia-Espino E, Ma J, Barzegar HR, Sharifi T, Jia XE, Shchuckarev A, Lu L, Ma C, Yang G, Wagberg T (2014) Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nat Commun 5:5253–5262Google Scholar
  26. 26.
    Wang S, Wang Y, Zhou L, Li J, Wang S, Liu H (2014) Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+. Electrochim Acta 132:7–14CrossRefGoogle Scholar
  27. 27.
    Wu Z, Liang H, Li C, Hu B, Xu X, Wang Q, Chen J, Yu S (2014) Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res 7(12):1861–1872CrossRefGoogle Scholar
  28. 28.
    Wu Z, Liang H, Chen L, Hu B, Yu S (2016) Bacterial cellulose: a robust platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Acc Chem Res 49(1):96–105CrossRefGoogle Scholar
  29. 29.
    Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151CrossRefGoogle Scholar
  30. 30.
    Yu W, Lin W, Shao X, Hu Z, Li R, Yuan D (2014) High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J Power Sources 272:137–143CrossRefGoogle Scholar
  31. 31.
    Zhang C, Zhou Y, Tang L, Zeng G, Zhang J, Peng B, Xie X, Lai C, Long B, Zhu J (2016) Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nano 6(1):1–11Google Scholar
  32. 32.
    Zhao D, Wang T, Han D, Rusinek C, Steckl AJ, Heineman WR (2015) Electrospun carbon nanofiber modified electrodes for stripping voltammetry. Anal Chem 87(18):9315–9321CrossRefGoogle Scholar
  33. 33.
    Zhou H, Hou H, Dai L, Li Y, Zhu J, Wang L (2016) Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb (II) and cd (II). Chin J Chem Eng 24(3):410–414CrossRefGoogle Scholar
  34. 34.
    Zhou W, Li C, Sun C, Yang X (2016) Simultaneously determination of trace Cd2+and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Food Chem 192:351–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Danfeng Qin
    • 1
    • 2
  • Shanshuang Gao
    • 1
  • Le Wang
    • 1
    • 2
  • Hangjia Shen
    • 1
    • 2
  • Nuerbiya Yalikun
    • 1
    • 2
  • Parviz Sukhrobov
    • 1
    • 2
  • Thomas Wagberg
    • 3
  • Yujie Zhao
    • 4
  • Xamxikamar Mamat
    • 1
  • Guangzhi Hu
    • 1
    • 3
  1. 1.Key Laboratory of Chemistry of Plant Resources in Arid Regions, State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilizationXinjiang Technical Institute of Physics and Chemistry, Chinese Academy of ScienceUrumqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of PhysicsUmea UniversityUmeaSweden
  4. 4.Ministry of AgricultureAgro-Environmental Protection InstituteTianjinChina

Personalised recommendations