Skip to main content
Log in

Magnetic cobalt-nitrogen-doped carbon microspheres for the preconcentration of phthalate esters from beverage and milk samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the preparation of magnetic cobalt/nitrogen-doped carbon microspheres (Co-N/Cs) by combining a hydrothermal procedure with a carbonization process. The textures of the Co-N/Cs were investigated by powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, nitrogen adsorption-desorption isotherms and vibration sample magnetometry. The Co-N/Cs possess a high surface area and strong magnetism. This results in good adsorption capability and enables magnetic separation. The Co-N/Cs are shown to be an effective magnetic solid-phase extraction adsorbent for the enrichment of various phthalate esters (diethyl phthalate, diallyl phthalate and diisobutyl phthalate) from sport beverages and milk samples prior to their determination by HPLC. The limits of detection (at an S/N ratio of 3) are between 0.1–0.2 and 0.08–0.3 ng mL−1 for sport beverages and milk samples, respectively. The recoveries when extracting all the spiked samples varied from 80.3% to 116.2%.

Magnetic cobalt/nitrogen-doped carbon microspheres (Co-N/Cs) were prepared and used as an effective magnetic solid phase extraction adsorbent for the enrichment of phthalate esters from beverages and milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu DM, Deng XJ, Fang EH, Zheng XH, Zhou Y, Lin LY, Chen LP, Wu M, Huang ZQ (2014) Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry. J Chromatogr A 1324:49–56. doi:10.1016/j.chroma.2013.11.017

    Article  CAS  Google Scholar 

  2. Yang JL, Li YX, Wang Y, Ruan J, Zhang J, Sun CJ (2015) Recent advances in analysis of phthalate esters in foods. TrAC Trends Anal Chem 72:10–26. doi:10.1016/j.trac.2015.03.018

    Article  CAS  Google Scholar 

  3. Du LP, Ma LJ, Qiao Y, Lu Y, Xiao DG (2016) Determination of phthalate esters in teas and tea infusions by gas chromatography–mass spectrometry. Food Chem 197(Part B):1200–1206. doi:10.1016/j.foodchem.2015.11.082

    Article  CAS  Google Scholar 

  4. Cinelli G, Avino P, Notardonato I, Centola A, Russo MV (2013) Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid–liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography–ion trap mass spectrometry. Anal Chim Acta 769:72–78. doi:10.1016/j.aca.2013.01.031

    Article  CAS  Google Scholar 

  5. Xu R, Gao HT, Zhu F, Cao WX, Yan YHM, Zhou X, Xu Q, Ji WL (2016) SPE–UPLC–MS/MS for the determination of phthalate monoesters in rats urine and its application to study the effects of food emulsifier on the bioavailability of priority controlling PAEs. J Chromatogr B 1012–1013:97–105. doi:10.1016/j.jchromb.2016.01.007

    Article  Google Scholar 

  6. Luks-Betlej K, Popp P, Janoszka B, Paschke H (2001) Solid-phase microextraction of phthalates from water. J Chromatogr A 938:93–101. doi:10.1016/S0021-9673(01)01363-2

    Article  CAS  Google Scholar 

  7. Wang J, Huang SS, Wang P, Yang YL (2016) Method development for the analysis of phthalate esters in tea beverages by ionic liquid hollow fibre liquid-phase microextraction and liquid chromatographic detection. Food Control 67:278–284. doi:10.1016/j.foodcont.2016.03.015

    Article  CAS  Google Scholar 

  8. Qi C, Cai Q, Zhao P, Jia X, Lu N, He L, Hou X (2016) The metal-organic framework MIL-101(Cr) as efficient adsorbent in a vortex-assisted dispersive solid-phase extraction of imatinibmesylate in rat plasma coupled with ultra-performance liquid chromatography/mass spectrometry: application to a pharmacokinetic study. J Chromatogr A 1449:30–38. doi:10.1016/j.chroma.2016.04.055

    Article  CAS  Google Scholar 

  9. Xu M, Liu MH, Sun MR, Chen K, Cao XJ, Hu YM (2016) Magnetic solid-phase extraction of phthalate esters (PAEs) in apparel textile by core–shell structured Fe3O4@silica@triblock-copolymer magnetic microspheres. Talanta 150:125–134. doi:10.1016/j.talanta.2015.12.027

    Article  CAS  Google Scholar 

  10. Wang XY, Deng CH (2016) Preparation of C18-functionalized magnetic polydopamine microspheres for the enrichment and analysis of alkylphenols in water samples. Talanta 148:387–392. doi:10.1016/j.talanta.2015.11.008

    Article  CAS  Google Scholar 

  11. Aziz-Zanjani MO, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. doi:10.1007/s00604-014-1265-y

    Article  CAS  Google Scholar 

  12. Herrero-Latorre C, Barciela-García J, García-Martín S, Peña-Crecente RM, Otárola-Jiménez J (2015) Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review. Anal Chim Acta 892:10–26. doi:10.1016/j.aca.2015.07.046

    Article  CAS  Google Scholar 

  13. Wu R, Ma F, Zhang LX, Li PW, Li GM, Zhang Q, Zhang W, Wang XP (2016) Simultaneous determination of phenolic compounds in sesame oil using LC–MS/MS combined with magnetic carboxylated multi-walled carbon nanotubes. Food Chem 204:334–342. doi:10.1016/j.foodchem.2016.02.086

    Article  CAS  Google Scholar 

  14. Wang C, Ma RY, Wu QH, Sun M, Wang Z (2014) Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples. J Chromatogr A 1361:60–66. doi:10.1016/j.chroma.2014.08.002

    Article  CAS  Google Scholar 

  15. Li N, Chen J, Shi YP (2016) Magnetic reduced graphene oxide functionalized with β-cyclodextrin as magnetic solid-phase extraction adsorbents for the determination of phytohormones in tomatoes coupled with high performance liquid chromatography. J Chromatogr A 1441:24–33. doi:10.1016/j.chroma.2016.02.077

    Article  CAS  Google Scholar 

  16. Mahpishanian S, Sereshti H (2016) Three-dimensional graphene aerogel-supported iron oxide nanoparticles as an efficient adsorbent for magnetic solid phase extraction of organophosphorus pesticide residues in fruit juices followed by gas chromatographic determination. J Chromatogr A 1443:43–53. doi:10.1016/j.chroma.2016.03.046

    Article  CAS  Google Scholar 

  17. Braghiroli F, Fierro V, Parmentier J, Pasc A, Celzard A (2016) Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer. Green Chem 18:3265–3271. doi:10.1039/C5GC02788H

    Article  CAS  Google Scholar 

  18. Feng SS, Li W, Wang JX, Song YF, Elzatahry AA, Xia YY, Zhao DY (2014) Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. Nano 6:14657–14661. doi:10.1039/c4nr05629a

    CAS  Google Scholar 

  19. Vejpravova J, Pacakova B, Kalbac M (2016) Magnetic impurities in single-walled carbon nanotubes and graphene: a review. Analyst 141:2639–2656. doi:10.1039/c6an00248j

    Article  CAS  Google Scholar 

  20. Xiao DL, Lu T, Zeng R, Bi YP (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183:2655–2675. doi:10.1007/s00604-016-1928-y

    Article  CAS  Google Scholar 

  21. Artyushkova K, Serov A, Rojas-Carbonell S, Atanassov P (2015) Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon Electrocatalysts. J Phys Chem C 119:25917–25928. doi:10.1021/acs.jpcc.5b07653

    Article  CAS  Google Scholar 

  22. Zhu C, Li H, Fu S, Du D, Lin Y (2016) Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev 45:517–531. doi:10.1039/c5cs00670h

    Article  CAS  Google Scholar 

  23. Liu D, Chen XF, Xu GQ, Guan J, Cao Q, Dong B, Qi YF, Li CH, Mu XD (2016) Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water. Sci Report 6:21365–21377. doi:10.1038/srep21365

    Article  Google Scholar 

  24. Liu RL, Ji WJ, He T, Zhang ZQ, Zhang J, Dang FQ (2014) Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion. Carbon 76:84–95. doi:10.1016/j.carbon.2014.04.052

    Article  CAS  Google Scholar 

  25. Rossier M, Schreier M, Krebs U, Aeschlimann B, Fuhrer R, Zeltner M, Grass RN, Günther D, Stark WJ (2012) Scaling up magnetic filtration and extraction to the ton per hour scale using carbon coated metal nanoparticles. Sep purify Techn 96:68–74. doi:10.1016/j.seppur.2012.05.024

    Article  CAS  Google Scholar 

  26. Yu C, Sun YF, Fan XM, Zhao ZB, Qiu JS (2013) Hierarchical carbon-encapsulated iron nanoparticles as a magnetically separable adsorbent for removing Thiophene in liquid fuel. Part Part Syst Charact 30:637–644. doi:10.1002/ppsc.201300006

    Article  CAS  Google Scholar 

  27. Bai CH, Li AQ, Yao XF, Liu HL, Li YW (2016) Efficient and selective aerobic oxidation of alcohols catalysed by MOF-derived co catalysts. Green Chem 18:1061–1069. doi:10.1039/C5GC02082D

    Article  CAS  Google Scholar 

  28. Fang RQ, Luque R, Li YW (2016) Selective aerobic oxidation of biomass-derived HMF to 2, 5-diformylfuran using a MOF-derived magnetic hollow Fe–Co nanocatalyst. Green Chem 18:3152–3157. doi:10.1039/C5GC03051J

  29. Wu XL, Hong HJ, Liu XT, Guan WB, Meng LX, Ye Y, Ma YQ (2013) Graphene-dispersive solid-phase extraction of phthalate acid esters from environmental water. Sci Total Environ 444:224–230. doi:10.1016/j.scitotenv.2012.11.060

    Article  CAS  Google Scholar 

  30. Liu L, Hao YH, Ren YQ, Wang C, Wu QH, Wang Z (2015) Magnetic nanoporous carbon as an adsorbent for the extraction of phthalate esters in environmental water and aloe juice samples. J Sep Sci 38:1411–1418. doi:10.1002/jssc.201401457

    Article  CAS  Google Scholar 

  31. Zhao RS, Liu YL, Zhou JB, Chen XF, Wang X (2013) Bamboo charcoal as a novel solid-phase microextraction coating material for enrichment and determination of eleven phthalate esters in environmental water samples. Anal Bioanal Chem 405:4993–4996. doi:10.1007/s00216-013-6865-6

    Article  CAS  Google Scholar 

  32. Wu QH, Zhou X, Sun M, Ma XX, Wang C, Wang Z (2014) Preparation of magnetic ordered microporous carbon for the preconcentration of some phthalate esters followed by their determination by HPLC. Microchim Acta 182:879–885. doi:10.1007/s00604-014-1402-7

    Article  Google Scholar 

  33. Yamini Y, Faraji M, Adeli M (2015) Magnetic silica nanomaterials for solid-phase extraction combined with dispersive liquid-liquid microextraction of ultra-trace quantities of plasticizers. Microchim Acta 182:1491–1499. doi:10.1007/s00604-015-1474-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuhua Wu or Zhi Wang.

Ethics declarations

Caina Jiao, Ruiyang Ma, Menghua Li, Chun Wang, Qiuhua Wu, and Zhi Wang declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Funding

This study was funded by the National Natural Science Foundation of China (31,571,925, 31,471,643, 31,671,930), and the Hebei “Double First Class Discipline” Construction Foundation for the Discipline of Food Science and Engineering of Hebei Agricultural University (2016SPGCA18), the Natural Science Foundation of Hebei Provinces (B2016204136), and the Scientific and Technological Research Foundation of the Department of Education of Hebei Province (ZD2016085).

Electronic supplementary material

ESM 1

(DOC 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Ma, R., Li, M. et al. Magnetic cobalt-nitrogen-doped carbon microspheres for the preconcentration of phthalate esters from beverage and milk samples. Microchim Acta 184, 2551–2559 (2017). https://doi.org/10.1007/s00604-017-2251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2251-y

Keywords

Navigation