Skip to main content

Advertisement

Log in

A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a molecularly imprinted polymer (MIP) deposited on multiwalled carbon nanotubes (MIP/MWCNTs) for separation and preconcentration of L-cysteine (L-Cys). The MIP was characterized by scanning electron microscopy, X-ray diffraction and FT-IR and via adsorption kinetics and adsorption isotherms. The MIP is shown to be a viable sorbent for L-Cys which subsequently is quantified by spectrophotometry through formation of a charge transfer complex with the DDQ reagent. The experimental parameters affecting separation efficiency and spectrophotometric determination were optimized. Under optimum conditions and at an analytical wavelength of 478 nm, the calibration plot is linear in the 4.0 to 180 ng mL−1 concentration range, and the limit of detection (at an S/N ratio of 3) is 2.3 ng mL−1. The intra-day and inter-day precision are in the range from 2.4 to 3.6%. The method was successfully applied to determination of L-Cys in spiked human serum and water samples where it gave recoveries ranging from 96.6 to 102.4%.

Schematic of the preparation of a  molecularly imprinted polymer coated on the multiwalled carbon nanotube (MIP/MWCNT) by functionalization of MCNTs with methacrylic acid and subsequent polymerization. The MIP/MWCNTs were successfully applied for extraction and spectrophotometric determination of L-Cys by charge transfer (CT) complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ensafi AA, Rezaei B, Nouroozi S (2009) Flow injection Spectrofluorimetric determination of Cystine and cysteine. J Braz Chem Soc 20(2):288–293

    Article  CAS  Google Scholar 

  2. Ahmad M, Pan C, Zhu J (2010) Electrochemical determination of L-cysteine by an elbow shaped, Sb-doped ZnO nano wire-modified electrode. J Mater Chem 20(34):7169–7174

    Article  CAS  Google Scholar 

  3. Kaniowska E, Chwatko G, Głowacki R, Kubalczyk P, Bald E (1998) Urinary excretion measurement of cysteine and homocysteine in the form of their S-pyridinium derivatives by high-performance liquid chromatography with ultraviolet detection. J Chromatogr A 798(1–2):27–35

    Article  CAS  Google Scholar 

  4. Jin W, Chen H (2000) A new method of determination of diffusion coefficients using capillary zone electrophoresis (peak-height method). Chromatographia 52(1):17–21

    Article  Google Scholar 

  5. Kubec R, Svobodova M, Valisec J (2001) Gas-chromatographic determination of Smethylcysteine sulfoxide in cruciferous vegetables. Eur Food Res Technol 213(4–5):386–388

    Article  CAS  Google Scholar 

  6. Huang S, Wang L, Huang C, Hu B, Su W, Xiao Q (2016) Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine. Microchim Acta 183(6):1855–1864

    Article  CAS  Google Scholar 

  7. Devasenathipathy R, Mani SM, Chen SM, Kohilarani K, Ramaraj S (2015) Determination of L- cysteine at iron tetrasulfonated phthalocyanine decorated multiwalled carbon nanotubes film modified electrode. Int J Electrochem Sci 10:682–690

    CAS  Google Scholar 

  8. Blasco F, Medina-Hernandez MJ, Sagrado S (1997) Use of pH gradients incontinuous-flow systems and multivariate regression techniques applied to the determination of methionine and cysteine in pharmaceuticals. Anal Chim Acta 348(1–3):151–159

    Article  CAS  Google Scholar 

  9. Dong Y, Su YM, Chen P, Sun H (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182(5-6):1071–1077

    Article  CAS  Google Scholar 

  10. Wen X, Yang Q, Yan Z, Deng Q (2011) Chemical analysis of food: techniques and applications. Microchem J 97(2):249–254

    Article  CAS  Google Scholar 

  11. Pohl P, Stecka H, Jamroz P (2012) Solid phase extraction with flame atomic absorption spectrometry for determination of traces of Ca, K, mg and Na in quality control of white sugar. Food Chem 130(2):441–446

    Article  CAS  Google Scholar 

  12. Ozdemi N, Soylak M, Elci L, Dogan M (2004) Speciation analysis of inorganic Sb(III) and Sb(V) ions by using mini column filled with Amberlite XAD-8 resin. Anal Chim Acta 505(1):37–41

    Article  Google Scholar 

  13. Martín-Esteban A (2001) Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds. Fresenius J Anal Chem 370(7):795–802

    Article  Google Scholar 

  14. Lasakova M, Jandera P (2009) Molecularly imprinted polymers and their application in solid phase extraction. J Sep Sci 32(5–6):799–812

    CAS  Google Scholar 

  15. Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628

    Article  CAS  Google Scholar 

  16. Lin Z, Cheng W, Li Y, Liu Z, Chen X, Huang C (2012) Novel superparamagnetic surface molecularly imprinted nanoparticle adopting dummy template: an efficient solid-phase extraction adsorbent for bisphenol. Anal Chim Acta 720:71–76

    Article  CAS  Google Scholar 

  17. Aswini KK, Vinu Mohan AM, Biju VM (2014) Molecularly imprinted polymer based electrochemical detection of L-cysteine at carbon paste electrode. Mater Sci Eng C 37:321–326

    Article  CAS  Google Scholar 

  18. Cai X, Li J, Zhang Z, Wang G, Song X, You J, Chen L (2014) Chemodosimeter-based fluorescent detection of L-cysteine after extracted by molecularly imprinted polymers. Talanta 120:297–303

    Article  CAS  Google Scholar 

  19. Xie CG, Zhang ZP, Wang DP, Guan GJ, Gao DM, Liu JH (2006) Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78(83):39–46

    Google Scholar 

  20. Yang H-H, Zhang S-Q, Tan F, Zhuang Z-X, Wang X-R (2005) Surface molecularly imprinted nanowires for biorecognition. J Am Chem Soc 127(5):1378–1379

    Article  CAS  Google Scholar 

  21. Tan CJ, Chua HG, Ker KH, Tong YW (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core shell miniemulsion polymerization. Anal Chem 80(3):683–692

    Article  CAS  Google Scholar 

  22. Hu TP, Zhang YM, Zheng LH, Fan GZ (2010) Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface. J Fuel Chem Technol 38(6):722–729

    Article  CAS  Google Scholar 

  23. Dai H, Xiao DL, He H, Li H, Yuan DH, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182(5–6):893–908

    Article  CAS  Google Scholar 

  24. Xu Z, Zhou W, Xu PP, Pan JM, Wu XY, Yan YS (2011) A molecularly imprinted polymer based on TiO2 as sacrificial support for selective recognition of dibenzothiophene. J Chem Eng 172(1):191–198

    Article  CAS  Google Scholar 

  25. Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183(10):2677–2695

    Article  CAS  Google Scholar 

  26. Ki C, Chang J (2006) Preparation of a molecularly imprinted polymeric nanocapsule with potential use in delivery applications. Macromolecules 39(9):3415–3419

    Article  CAS  Google Scholar 

  27. Janiak DS, Ayyub OB, Kofinas P (2009) Effects of charge density on the recognition properties of molecularly imprinted polymeric hydrogels. Macromolecules 42(5):1703–1709

    Article  CAS  Google Scholar 

  28. Hua Z, Chen Z, Li Y, Zhao M (2008) Thermo sensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 24(12):5773–5780

    Article  CAS  Google Scholar 

  29. Yang YZ, Liu XG, Guo MC, Li S, Liu WF, Xu BS (2011) Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene. Colloids Surf A Physicochem Eng Asp 377(1–3):379–385

    Article  CAS  Google Scholar 

  30. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I Solids J Amer Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  31. Negi D, Chanu T (2008) Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine. Nanotechnology 19(46):465503–465508

    Article  Google Scholar 

  32. Wang Y, Wang J, Yang F, Yang X (2010) Spectrophotometric determination of cysteine with gold nanoparticles stabilized with single-stranded oligo nucleotides. Anal Sci 26(5):545–549

    Article  CAS  Google Scholar 

  33. Wei X, Qi L, Tan J, Liu R, Wang F (2010) A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal Chim Acta 671(1):80–84

    Article  CAS  Google Scholar 

  34. Pan N, Li-Ying W, Wu LL, Peng CF, Xie ZJ (2016) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72

    Article  Google Scholar 

  35. Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104(2):627–633

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Hashemi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M., Nazari, Z. & Bigdelifam, D. A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of L-cysteine. Microchim Acta 184, 2523–2532 (2017). https://doi.org/10.1007/s00604-017-2236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2236-x

Keywords

Navigation