Skip to main content
Log in

A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The amphiphilic copolymer poly(vinylbenzyl thymine-co-styrene-co-maleic anhydride) (PSVM) was synthesized by radical copolymerization of styrene, vinylbenzyl thymine, and maleic anhydride. Its chemical structure was proven by using 1H nuclear magnetic resonance spectroscopy. PSVM was used as a host to prepare a composite consisting of carbon nanotubes and gold nanoparticles by in-situ reduction. The morphology of the nanocomposites was studied by transmission electron microscopy. A glassy carbon electrode coated with this composite is shown to be a viable sensor for the determination of dopamine (DA), paracetamol (PAT) (both at a pH value of 7), and uric acid (UA) (at pH 6). Two linear relationships exists between amperometric current and analyte concentrations. For DA, the linear analytical ranges are from 0.1 to 200 μM and from 200 to 1000 μM. For PAT, the ranges are from 0.1 to 200 μM and from 200 to 1000 μM. For UA, the ranges are from 0.05 to 1000 μM. The respective limits of detection (for S/N = 3) are 56, 27 and 50 nM. The sensor is highly sensitive, stable, reproducible, and selective.

A hybrid nanocomposite (CNT/PSVM/Au) of carbon nanotube (CNT) – Au nanoparticle composite based on the amphiphilic copolymer poly(vinylbenzyl thymine/styrene-co-maleic anhydride) (PSVM) was prepared through in situ reduction. This nanocomposite was immobilized on a glassy carbon electrode (GCE) to fabricate an electrochemical sensor to determine dopamine (DA), paracetamol (PAT) and uric acid (UA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Feng J, Guo H, Li Y, Wang Y, Chen W, Wang A (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5:1226–1231

    Article  CAS  Google Scholar 

  2. Sun C, Lee H, Yang J, Wu C (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455

    Article  CAS  Google Scholar 

  3. Liu W, Li C, Tang L, Gu Y, Zhang Z (2013a) Facile synthesis of Graphene-poly (styrene sulfonate)-Pt Nanocomposite and its application in Amperometric determination of dopamine. Chin J Anal Chem 41:714–718

    Article  CAS  Google Scholar 

  4. Su H, Sun B, Chen L, Xu Z, Ai S (2012) Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal Methods 4:43981–43986

    Google Scholar 

  5. Ramos JVH, de Matos MF, Costa TMH, Dias SLP, Benvenutti EV, de Menezes EW, Arenas LT (2015) Mesoporous chitosan/silica hybrid material applied for development of electrochemical sensor for paracetamol in presence of dopamine. Microporous Mesoporous Mater 217:109–118

    Article  CAS  Google Scholar 

  6. Qi S, Zhao B, Tang H, Jiang X (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine grapheme. Electrochim Acta 161:395–402

    Article  CAS  Google Scholar 

  7. Cardoso AS, Gonzaga NC, Medeiros CC, de Carvalho DF (2013) Association of uric acid levels with components of metabolic syndrome and non-alcoholic fatty liver disease in overweight or obese children and adolescents. J Pediatr 89:412–418

    Article  Google Scholar 

  8. Liu M, Chen Q, Lai C, Zhang Y, Deng J, Li H, Yao S (2013b) A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@au nanoparticles with graphene sheet. Biosens Bioelectron 48:75–81

    Article  CAS  Google Scholar 

  9. Vo A, Longoria J, Blackledge W, Yoshii I, Le T, Liou R, Brenner M (2011) Development of a Cobinamide-based cyanide sensor for rapid detection of cyanide toxicity. Chest 150:323A

    Article  Google Scholar 

  10. Moini M, Schultz CL, Mahmood H (2003) CE/electrospray ionization-MS analysis of underivatized d/l-amino acids and several small neurotransmitters at attomole levels through the use of 18-crown-6-tetracarboxylic acid as a complexation reagent/background electrolyte. Anal Chem 75:6282–6287

    Article  CAS  Google Scholar 

  11. Domínguez-Álvarez J, Mateos-Vivas M, García-Gómez D, Rodríguez-Gonzalo E, Carabias-Martínez R (2013) Capillary electrophoresis coupled to mass spectrometry for the determination of anthelmintic benzimidazoles in eggs using a QuEChERS with preconcentration as sample treatment. J Chromatogr A 1278:166–174

    Article  Google Scholar 

  12. Wabaidur SM, Alothman ZA, Naushad M (2012) Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex. Spectrochim Acta A 93:331–334

    Article  CAS  Google Scholar 

  13. Yuan Y, Han S, Hu L, Parveen S, Xu G (2012) Coreactants of tris (2, 2′-bipyridyl) ruthenium (II) electrogenerated chemiluminescence. Electrochim Acta 82:484–492

    Article  CAS  Google Scholar 

  14. Wang Y, Xiao L, Cheng M (2011) Determination of phenylureas herbicides in food stuffs based on matrix solid-phase dispersion extraction and capillary electrophoresis with electrochemiluminescence detection. J Chromatogr A 1218:9115–9119

    Article  CAS  Google Scholar 

  15. Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23

    Article  CAS  Google Scholar 

  16. Yang L, Huang N, Lu Q, Liu M, Li H, Zhang Y, Yao S (2016) A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional au NPs/carbon dots nanocomposite and grapheme. Anal Chim Acta 903:69–80

    Article  CAS  Google Scholar 

  17. Liu W, Li C, Tang L, Tong A, Gu Y, Cai R, Zhang Z (2013c) Nanopore array derived from l-cysteine oxide/gold hybrids: enhanced sensing platform for hydroquinone and catechol determination. Electrochim Acta 88:15–23

    Article  CAS  Google Scholar 

  18. Devadoss A, Han H, Song T, Kim YP, Paik U (2013) Gold nanoparticle-composite nanofibers for enzymatic electrochemical sensing of hydrogen peroxide. Analyst 138:5025–5030

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu Y, He J, Pang P, Gao Y, Hu Q (2013) Electrochemical behavior of graphene/Nafion/azure I/au nanoparticles composites modified glass carbon electrode and its application as nonenzymatic hydrogen peroxide sensor. Electrochim Acta 90:550–555

    Article  CAS  Google Scholar 

  20. Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6:13648–13656

    Article  CAS  Google Scholar 

  21. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41

    Article  CAS  Google Scholar 

  22. Jiao J, Zhang H, Yu L, Wang X, Wang R (2012) Decorating multi-walled carbon nanotubes with au nanoparticles by amphiphilic ionic liquid self-assembly. Colloids Surface A 408:1–7

    Article  CAS  Google Scholar 

  23. Kumar NA, Bund A, Cho BG (2009) Novel amino-acid-based polymer/multi-walled carbon nanotube bio-nanocomposites: highly water dispersible carbon nanotubes decorated with gold nanoparticles. Nanotechnology 20:225608–225616

    Article  Google Scholar 

  24. Liu J, Lin L, Xie Y, Liu Y, Yuan Y, Liu X, Liu R (2015) An efficient approach to prepare carbon nanotube­gold nanoparticles Nanocomposites based on Amphiphilic copolymer containing Coumarin. Chem Lett 44:1497–1499

    Article  CAS  Google Scholar 

  25. Kang Y, Taton TA (2003) Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J Am Chem Soc 125:5650–5651

    Article  CAS  Google Scholar 

  26. Kang Y, Taton TA (2005) Core/Shell gold nanoparticles by self-assembly and crosslinking of Micellar, block-copolymer shells. Angew Chem Int Ed 44:409–412

    Article  CAS  Google Scholar 

  27. Cheng CM, Egbe MI, Grasshoff JM, Guarrera DJ, Pai RP, Warner JC, Taylor LD (1995) Synthesis of 1 -(Vinylbenzyl)thymine, a novel, versatile multi-functional monomer. J Polym Sci Part A: Polym Chem 33:2515–2519

    Article  CAS  Google Scholar 

  28. Kuo SW, Cheng RS (2009) DNA-like interactions enhance the miscibility of supramolecular polymer blends. Polymer 50:177–188

    Article  CAS  Google Scholar 

  29. Wang Y, Xiong Y, Qu J, Qu J, Li S (2016) Selective sensing of hydroquinone and catechol based on multiwalled carbon nanotubes/polydopamine/gold nanoparticles composites. Sensor Actuat B-Chem 223:501–508

    Article  CAS  Google Scholar 

  30. Wang H, Li T, Jia W, Xu H (2006) Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly (3-methylthiophene) modified electrode. Biosens Bioelectron 22:664–669

    Article  Google Scholar 

  31. Canevari TC, Raymundo-Pereira PA, Landers R, Benvenutti EV, Machado SA (2013) Sol–gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. Talanta 116:726–735

    Article  CAS  Google Scholar 

  32. Li Y, Lin X (2006) Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensor Actuat B-Chem 115:134–139

    Article  CAS  Google Scholar 

  33. Babaei A, Afrasiabi M, Babazadeh M (2010) A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis 22:1743–1749

    Article  CAS  Google Scholar 

  34. Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H (2014) Highly dispersible and stable copper terephthalate metaleorganic frameworkegraphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6:11573–11580

    Article  CAS  Google Scholar 

  35. Liu R, Zeng X, Liu J, Luo J, Zheng Y, Liu X (2016) A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamol. Microchim Acta 183:1543–1551

    Article  CAS  Google Scholar 

  36. Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly (3, 4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183:2517–2523

    Article  CAS  Google Scholar 

  37. Zhao D, Fan D, Wang J, Xu C (2015) Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 182:1345–1352

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Nature Science Foundation of Jiangsu Province (No. BK20140160), Innovation Foundation of Jiangsu (No. BY2015019-14) and the Fundamental Research Funds for the Central Universities (JUSRP11514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingcheng Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 2492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xie, Y., Wang, K. et al. A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim Acta 184, 1739–1745 (2017). https://doi.org/10.1007/s00604-017-2185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2185-4

Keywords

Navigation