Skip to main content
Log in

A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes the construction of a sandwich-type of DNA biosensor for detecting a specific DNA sequence of Mycobacterium tuberculosis (MTB). A polyaniline-reduced graphene oxide (PANI-rGO) composite with favorable electrochemical activity was used as a redox nanoprobe for the generation of the voltammetric signal. The composite was decorated with gold nanoparticles (AuNPs) onto which the signal probe was immobilized to form the tracer label. After hybridization between target DNA and tracer label, the voltammetric signal resulting from the polyaniline-reduced graphene oxide (PANI-rGO) redox probe can be apparently observed. The biosensor can detect the specific IS6110 DNA sequence of MTB in the 0.1 pM to 10 nM concentration range, and the detection limit is as low as 50 fM (at an S/N ratio of 3). The biosensor is also highly specific and does not recognize mismatches. It was applied to the determination of denatured PCR products in clinical samples such as sputum, and the results agreed with those obtained by gel electrophoresis. This assay provides a versatile and powerful tool for detection of MTB, and probably for other pathogens if appropriate molecular markers are available.

Schematic of an electrochemical DNA biosensor for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). It uses a redox nanoprobe (rGO-PANI) for signal amplification. MCH: 6-mercapto-1-hexanol; PANI: polyaniline; rGO: reduced graphene oxide; rGO-PANI: polyaniline-reduced graphene oxide nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. World Health Organization. Global tuberculosis report 2015 [Internet]. Available from: http://apps.who.int/iris/bitstream/10665/191102/1/9789241565059_eng.pdf?ua=1. Accessed 06 July 2016

  2. Behr MA, Warren SA, Salamon H, Hopewell PC, Ponce de Leon A, Daley CL, Small PM (1999) Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353:444–449

    Article  CAS  Google Scholar 

  3. Del Portillo P, Murillo LA, Patarroyo ME (1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29:2163–2168

    CAS  Google Scholar 

  4. Kumar P, Pandya D, Singh N, Behera D, Aggarwal P, Singh S (2014) Loop-mediated isothermal amplification assay for rapid and sensitive diagnosis of tuberculosis. J Inf Secur 69:607–615

    Google Scholar 

  5. Ng KP, Rukumani DV, Chong J, Kaur H (2014) Identification of Mycobacterium species following growth detection with the BACTEC MGIT 960 system by DNA line probe assay. Int J Mycobacteriol 3:82–87

    Article  Google Scholar 

  6. Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S (2016) Fabrication of an electrochemical DNA-based biosensor for Bacillus Cereus detection in milk and infant formula. Biosens Bioelectron 80:582–589

    Article  CAS  Google Scholar 

  7. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H (2015) E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem 87:9257–9264

    Article  CAS  Google Scholar 

  8. Zhang W, Luo C, Zhong L, Nie S, Cheng W, Zhao D, Ding S (2013) Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor. Microchim Acta 180:1233–1240

    Article  CAS  Google Scholar 

  9. Liu A, Wang K, Weng S, Lei Y, Lin L, Chen W, Lin X, Chen Y (2012) Development of electrochemical DNA biosensors. Trends Anal Chem 37:101–111

    Article  Google Scholar 

  10. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  CAS  Google Scholar 

  11. Teng Y, Zhang X, Fu Y, Liu H, Wang Z, Jin L, Zhang W (2011) Optimized ferrocene-functionalized ZnO nanorods for signal amplification in electrochemical immunoassay of Escherichia coli. Biosens Bioelectron 26:4661–4666

    Article  CAS  Google Scholar 

  12. Wang H, Wang X, Zhang X, Qin X, Zhao Z, Miao Z, Huang N, Chen Q (2009) A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens Bioelectron 25:142–146

    Article  Google Scholar 

  13. Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821

    Article  CAS  Google Scholar 

  14. Wnek GE (1986) A proposal for the mechanism of conduction in polyaniline. Synth Met 15:213–218

    Article  CAS  Google Scholar 

  15. Tarver J, Yoo JE, Dennes TJ, Schwartz J, Loo Y-L (2009) Polymer acid doped polyaniline is electrochemically stable beyond pH 9. Chem Mater 21:280–286

    Article  CAS  Google Scholar 

  16. Hui N, Sun X, Song Z, Niu S, Luo X (2016) Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein. Biosens Bioelectron 86:143–149

    Article  CAS  Google Scholar 

  17. Hammond JL, Formisano N, Estrela P, Carrara S, Tkac J (2016) Electrochemical biosensors and nanobiosensors. Essays Biochem 60:69–80

    Article  Google Scholar 

  18. Bai L, Chai Y, Pu X, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6:2902–2908

  19. Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 33:1090–1096

    Article  CAS  Google Scholar 

  20. Gholoobi A, Masoudi-Kazemabad A, Meshkat M, Meshkat Z (2014) Comparison of culture and PCR methods for diagnosis of Mycobacterium tuberculosis in different clinical specimens. Jundishapur J Microbiol 7:e8939

    Article  Google Scholar 

  21. Nghiem MN, Nguyen BV, Nguyen ST, Vo TT, Nong HV (2015) A simple, single triplex PCR of IS6110, IS1081, and 23S ribosomal DNA targets, developed for rapid detection and discrimination of Mycobacterium from clinical samples. J Microbiol Biotechnol 25:745–752

    Article  CAS  Google Scholar 

  22. Jana NR, Ying JY (2008) Synthesis of functionalized au nanoparticles for protein detection. Adv Mater 20:430–434

    Article  CAS  Google Scholar 

  23. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67:735–743

    Article  CAS  Google Scholar 

  24. Cannas A, Goletti D, Girardi E, Chiacchio T, Calvo L, Cuzzi G, Piacentini M, Melkonyan H, Umansky SR, Lauria FN, Ippolito G, Tomei LD (2008) Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung Dis 12:146–151

    CAS  Google Scholar 

  25. Li L-L, Liu K-P, Yang G-H, Wang C-M, Zhang J-R, Zhu J-J (2011) Fabrication of graphene–quantum dots composites for sensitive Electrogenerated Chemiluminescence Immunosensing. Adv Funct Mater 21:869–878

    Article  CAS  Google Scholar 

  26. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys 241:20–22

    Article  CAS  Google Scholar 

  27. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    Article  CAS  Google Scholar 

  28. Silva R, Voiry D, Chhowalla M, Asefa T (2013) Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. J Am Chem Soc 135:7823–7826

    Article  CAS  Google Scholar 

  29. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  CAS  Google Scholar 

  30. Xiang Y, Deng K, Xia H, Yao C, Chen Q, Zhang L, Liu Z, Fu W (2013) Isothermal detection of multiple point mutations by a surface plasmon resonance biosensor with au nanoparticles enhanced surface-anchored rolling circle amplification. Biosens Bioelectron 49:442–449

    Article  CAS  Google Scholar 

  31. Li F, Yu Y, Li Q, Zhou M, Cui H (2014) A homogeneous signal-on strategy for the detection of rpoB genes of Mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal Chem 86:1608–1613

    Article  CAS  Google Scholar 

  32. Hwang SH, Kim DE, Sung H, Park BM, Cho MJ, Yoon OJ, Lee DH (2015) Simple detection of the IS6110 sequence of Mycobacterium tuberculosis complex in sputum, based on PCR with graphene oxide. PLoS One 10:e0136954

    Article  Google Scholar 

  33. Karaballi RA, Nel A, Krishnan S, Blackburn J, Brosseau CL (2015) Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) aptasensor for direct detection of DNA hybridization. Phys Chem Chem Phys 17:21356–21363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (81601856), Funds for Young Science and Technology Talent Cultivation Plan of Chongqing City (cstc2014kjrc-qnrc00004), the National Key Clinical Specialist Construction Programs of China ([2012] No. 649) and Funds for Outstanding Young Scholars in Chongqing Medical University (CYYQ201405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijuan Bai.

Ethics declarations

No conflict of interest exits in the submission of this manuscript, and it is approved by all authors for publication. All procedures performed in this study were in accordance with the ethical standards.

Electronic supplementary material

ESM 1

(DOC 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Y., Yang, Y. et al. A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis . Microchim Acta 184, 1801–1808 (2017). https://doi.org/10.1007/s00604-017-2184-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2184-5

Keywords

Navigation