Skip to main content
Log in

A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A conducting polymer composite was prepared from nano-sized hydroxyaptite (nHAp) doped into poly(3,4-ethylenedioxythiophene) (PEDOT) and then electrodeposited on a glassy carbon electrode (GCE). The nHAp carries carboxy groups and therefore is negatively charged at moderate pH value. When doped into PEDOT (PEDOT-nHAp), it forms a uniform and stable film that exhibits low electrochemical impedance, a large specific surface, and high activity toward the electrochemical oxidation of nitrite. Under optimized conditions and at a relatively low working potential of 0.78 V (vs. SCE), the modified GCE exhibited a linear amperometric response in the 0.25 μM to 1.05 mM nitrite concentration range, and the limit of detection is as low as 83 nM.

A highly sensitive nitrite sensor was developed based on conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carboxyl group functionalized hydroxyapatite nanoparticles, which exhibited a large surface area and good conductivity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zanin H, Saito E, Marciano FR, Ceragioli HJ, Granato AEC, Porcionatto M, Lobo AO (2013) Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications. J Mater Chem B 1:4947–4955

    Article  CAS  Google Scholar 

  2. Nathanael AJ, Hong SI, Mangalaraj D, Ponpandian N, Chen PC (2012) Template-free growth of novel hydroxyapatite nanorings: formation mechanism and their enhanced functional properties. Cryst Growth Des 12:3565–3574

    Article  CAS  Google Scholar 

  3. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  4. Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceram Int 42:3725–3744

    Article  CAS  Google Scholar 

  5. Zahmakiran M, Tonbul Y, Özkar S (2010) Ruthenium (0) nanoclusters supported on hydroxyapatite: highly active, reusable and green catalyst in the hydrogenation of aromatics under mild conditions with an unprecedented catalytic lifetime. Chem Commun 46:4788–4790

  6. Zahouily M, Abrouki Y, Bahlaouan B, Rayadh A, Sebti S (2003) Hydroxyapatite: new efficient catalyst for the Michael addition. Catal Commun 4:521–524

    Article  CAS  Google Scholar 

  7. Tran RT, Wang L, Zhang C, Huang M, Tang W, Zhang C, Zhang Z, Jin D, Banik B, Brown JL, Xie Z, Bai X, Yang J (2014) Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator. J Biomed Mater Res A 102:2521–2523

    Article  Google Scholar 

  8. Akazawa T, Kobayashi M, Yoshida M, Matsushima K, Minoshima H, Sugimura H, Kanno T, Horiuchi J (1999) Improved liquid chromatographic separation of different proteins by designing functional surfaces of cattle bone-originated apatite. J Chromatogr A 862:217–220

    Article  CAS  Google Scholar 

  9. Li Y, Liu X, Zeng X, Liu Y, X. Liu, Wei W, Luo S (2009) Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry. Sens Actuators B Chem 139:604–610

  10. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  CAS  Google Scholar 

  11. Wang HS, Wang GX, Pan QX (2005) Electrochemical study of the interactions of DNA with redox-active molecules based on the immobilization of dsDNA on the sol-gel derived nano porous hydroxyapatite-polyvinyl alcohol hybrid material coating. Electroanal 17:1854–1860

    Article  CAS  Google Scholar 

  12. Yang L, Wei W, Gao X, Xia J, Tao H (2005) A new antibody immobilization strategy based on electrodeposition of nanometer-sized hydroxyapatite for label-free capacitive immunosensor. Talanta 68:40–46

    Article  CAS  Google Scholar 

  13. Pan D, Wang Y, Chen Z, Yin T, Qin W (2009) Fabrication and characterization of carbon nanotube-hydroxyapatite nanocomposite: application to anodic stripping voltammetric determination of cadmium. Electroanal 21:944–952

    Article  CAS  Google Scholar 

  14. Lee SC, Choi HW, Lee HJ, Kim KJ, Chang JH, Kim SY, Choi J, Oh KS, Jeong YK (2007) In-situ synthesis of reactive hydroxyapatite nano-crystals for a novel approach of surface grafting polymerization. J Mater Chem 17:174–180

    Article  CAS  Google Scholar 

  15. Hu YY, Liu XP, Ma X, Rawal A, Prozorov T, Akinc M, Mallapragada SK, Schmidt-Rohr K (2011) Biomimetic self-assembling copolymer−hydroxyapatite nanocomposites with the nanocrystal size controlled by citrate. Chem Mater 23:2481–2490

    Article  CAS  Google Scholar 

  16. Montero-Ocampo C, Villegas D, Veleva L (2005) Controlled potential electrodeposition of calcium phosphate on Ti6Al4V. J Electrochem Soc 152:C692–C696

    Article  CAS  Google Scholar 

  17. Zhang JM, Lin CJ, Feng ZD, Tian ZW (1998) Mechanistic study on electrochemical codeposition of mixed zinc–erbium oxide films on the cathodic surface. J Electroanal Chem 452:235–240

    Article  CAS  Google Scholar 

  18. Argum AA, Cirpan A, Reynolds JR (2003) The first truly all-polymer electrochromic devices. Adv Mater 15:1338–1341

    Article  Google Scholar 

  19. Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K (2011) Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Funct Mater 21:1076–1081

    Article  CAS  Google Scholar 

  20. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2008) PEDOT-au nanocomposite film for electrochemical sensing. Mater Lett 62:571–573

    Article  CAS  Google Scholar 

  21. Roncali J, Blanchard P, Frere P (2005) 3, 4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. J Mater Chem 15:1589–1610

    Article  CAS  Google Scholar 

  22. Luo X, Weaver CL, Tan S, Cui XT (2013) Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. J Mater Chem B 1:1340–1348

    Article  CAS  Google Scholar 

  23. Wang W, Xu G, Cui XT, Sheng G, Luo X (2014) Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron 58:153–156

    Article  CAS  Google Scholar 

  24. Cui M, Song Z, Wu Y, Guo B, Fan X, Luo X (2016) A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly (ethylene glycol) doped conducting polymer PEDOT. Biosens Bioelectron 79:736–741

    Article  CAS  Google Scholar 

  25. Xu G, Li B, Luo X (2013) Carbon nanotube doped poly (3, 4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens Actuators B Chem 176:69–74

    Article  CAS  Google Scholar 

  26. Zhu ZT, Mabeck JT, Zhu CC, Cady NC, Batt CA, Malliaras GG (2004) A simple poly (3, 4-ethylene dioxythiophene)/poly (styrene sulfonic acid) transistor for glucose sensing at neutral pH. Chem Commun:1556–1557

  27. Lawal AT, Wallace GG (2014) Vapour phase polymerisation of conducting and non-conducting polymers: a review. Talanta 119:133–143

    Article  CAS  Google Scholar 

  28. Mativetsky JM, Tarver J, Yang X, Koel BE, Loo YL (2014) Structural origin of anisotropic transport in electrically conducting dichloroacetic acid-treated polymers. Org Electron 15:631–638

    Article  CAS  Google Scholar 

  29. Rhee SH, Tanaka J (1999) Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20:2155–2160

    Article  CAS  Google Scholar 

  30. Spanos N, Patis A, Kanellopoulou D, Andritsos N, Koutsoukos PG (2007) Precipitation of calcium phosphate from simulated milk ultrafiltrate solutions. CrystGrowth Des 7:25–29

    CAS  Google Scholar 

  31. Jiang WG, Pan HH, Cai YR, Tao JH, Liu P, Xu XR, Tang RK (2008) Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level. Langmuir 24:12446–12451

    Article  CAS  Google Scholar 

  32. Kamyabi MA, Aghajanloo F (2008) Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem 614:157–165

    Article  CAS  Google Scholar 

  33. Huang SS, Liu L, Mei LP, Zhou JY, Guo FY, Wang AJ, Feng JJ (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797

    Article  CAS  Google Scholar 

  34. Mehmeti E, Stanković DM, Hajrizi A, Kalcher K (2016) The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta 159:34–39

    Article  CAS  Google Scholar 

  35. Lin P, Chai F, Zhang R, Xu G, Fan X, Luo X (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241

    Article  CAS  Google Scholar 

  36. Dai J, Deng D, Yuan Y, Zhang J, Deng F, He S (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly (toluidine blue). Microchim Acta 183:1553–1561

    Article  CAS  Google Scholar 

  37. Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly (diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183:2031–2037

    Article  CAS  Google Scholar 

  38. Marlinda AR, Pandikumar A, Yusoff N, Huang NM, Lim HN (2015) Electrochemical sensing of nitrite using a glassy carbon electrode modified with reduced functionalized graphene oxide decorated with flower-like zinc oxide. Microchim Acta 182:1113–1122

    Article  CAS  Google Scholar 

  39. Rabti A, Aoun SB, Raouafi N (2016) A sensitive nitrite sensor using an electrode consisting of reduced graphene oxide functionalized with ferrocene. Microchim Acta 183:3111–3117

    Article  CAS  Google Scholar 

  40. Zhuang Z, Lin H, Zhang X, Qiu F, Yang H (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183:2807–2814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21422504 and 21275087), the Natural Science Foundation of Shandong Province of China (JQ201406), the Taishan Scholar Program of Shandong Province of China and the Domestic Visiting Scholar Program of Shandong Province of China for Young Backbone Teachers of Colleges and Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiliang Luo.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Han, R., Feng, X. et al. A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184, 1721–1727 (2017). https://doi.org/10.1007/s00604-017-2180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2180-9

Keywords

Navigation