Skip to main content
Log in

Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite consisting of polyaniline and multiwalled carbon nanotubes was tethered with a thiolated thrombin-specific aptamer and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a limit of detection of 80 fM. Tethering was accomplished via a thiol-ene reaction between thiolated thrombin aptamer (TTA) and oxidized polyaniline (PANI) that was chemically synthesized in the presence of solution-dispersed multiwalled carbon nanotubes (MWCNTs). The modified GCE exhibits a pair of well-defined redox peaks (at 50/−25 mV) of self-doped PANI in neutral solution, and the tethered TTA-thrombin interaction gives a decreased electrochemical signal. Cyclic voltammetry, scanning electron microscopy and ultraviolet visible spectroscopy were used to characterize the film properties. This amperometric aptasensor is sensitive, selective and reproducible. It was applied to the determination of thrombin in spiked human serum (0.2 to 4 nM) and gave recoveries that ranged from 95 to 102%.

A nanocomposite consisting of polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) was tethered with a thiolated thrombin aptamer (TTA) and placed on a glassy carbon electrode (GCE) to obtain a biosensor for thrombin that has a 80 f. detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Crivianu-Gaita V, Thompson M (2016) Aptamers, antibody scFv, and antibody Fab' fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron 85:32–45

    Article  CAS  Google Scholar 

  2. Du Y, Li B, Wei H, Wang Y, Wang E (2008) Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem 80:5110–5117

    Article  CAS  Google Scholar 

  3. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-Analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229

    Article  CAS  Google Scholar 

  4. Fu Y, Zou C, Bu L, Xie Q, Yao S (2013) Novel amperometric aptasensor based on Analyte-induced suppression of enzyme catalysis in polymeric Bionanocomposites. ACS Appl Mater Interfaces 5:934–939

    Article  CAS  Google Scholar 

  5. Radi AE, Acero Sanchez JL, Baldrich E, O'Sullivan CK (2005) Reusable Impedimetric aptasensor. Anal Chem 77:6320–6323

    Article  CAS  Google Scholar 

  6. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  7. Basnar B, Elnathan R, Willner I (2006) Following aptamer−thrombin binding by force measurements. Anal Chem 78:3638–3642

    Article  CAS  Google Scholar 

  8. Ma M, Zheng X (2015) Preparation of brightly fluorescent silica nanoparticles modified with lucigenin and chitosan, and their application to an aptamer-based sandwich assay for thrombin. Microchim Acta 182:2193–2199

    Article  CAS  Google Scholar 

  9. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 56:231–236

    Article  CAS  Google Scholar 

  10. Li J, Wang J, Guo X, Zheng Q, Peng J, Tang H, Yao S (2015) Carbon nanotubes labeled with aptamer and horseradish peroxidase as a probe for highly sensitive protein biosensing by postelectropolymerization of insoluble precipitates on electrodes. Anal Chem 87:7610–7617

    Article  CAS  Google Scholar 

  11. Zhou Y, Yu B, Guiseppi EA, Sergeyev V, Levon K (2009) Potentiometric monitoring DNA hybridization. Biosens Bioelectron 24:3275–3280

    Article  CAS  Google Scholar 

  12. Thompson LA, Kowalik J, Josowicz M, Janata J (2002) Label-free DNA hybridization probe based on a conducting polymer. J Am Chem Soc 125:324–325

    Article  Google Scholar 

  13. Chen L, Li Z, Meng Y, Zhang P, Su Z, Liu Y, Huang Y, Zhou Y, Xie Q, Yao S (2014) Sensitive square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ ions at Bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode. Sensor Actua B 191:94–101

    Article  CAS  Google Scholar 

  14. Su Z, Liu Y, Zhang Y, Xie Q, Chen L, Huang Y, Fu Y, Meng Y, Li X, Ma M (2013) Thiol-ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+. Analyst 138: 1180–1186

  15. Liu Y, Su Z, Zhang Y, Chen L, Gu T, Huang S, Liu Y, Sun L, Xie Q, Yao S (2013) Amperometric determination of ascorbic acid using multiwalled carbon nanotube-thiolated polyaniline composite modified glassy carbon electrode. J Electroanal Chem 709:19–25

    Article  CAS  Google Scholar 

  16. Su Z, Liu Y, Xie Q, Chen L, Zhang Y, Meng Y, Li Y, Fu Y, Ma M, Yao S (2012) Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine. Biosens Bioelectron 36:154–160

    Article  CAS  Google Scholar 

  17. Chen L, Su Z, He X, Liu Y, Qin C, Zhou Y (2012) Square wave anodic stripping voltammetric determination of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy carbon electrode. Electrochem Commun 15:34–37

    Article  Google Scholar 

  18. Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39:1355–1387

    Article  CAS  Google Scholar 

  19. Liu J, Tian S, Knoll W (2005) Properties of polyaniline/carbon nanotube multilayer films in neutral solution and their application for stable low-potential detection of reduced β-nicotinamide adenine dinucleotide. Langmuir 21:5596–5599

    Article  CAS  Google Scholar 

  20. Tian S, Liu J, Zhu T, Knoll W (2004) Polyaniline/gold nanoparticle multilayer films: assembly, properties, and biological applications. Chem Mater 16:4103–4108

    Article  CAS  Google Scholar 

  21. Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 127:653–658

    Article  CAS  Google Scholar 

  22. Shreepathi S, Holze R (2005) Spectroelectrochemical investigations of soluble polyaniline synthesized via new inverse emulsion pathway. Chem Mater 17:4078–4085

    Article  CAS  Google Scholar 

  23. Elwahed A, Holze R (2002) Ion size and size memory effects with electropolymerized polyaniline. Synth Met 131:61–70

    Article  Google Scholar 

  24. Masters JG, Ginder JM, MacDiarmid AG, Epstein AJ (1992) Thermochromism in the insulating forms of polyaniline: role of ring-torsional conformation. J Chem Phys 96:4768–4778

    Article  CAS  Google Scholar 

  25. Zhou Y, Yu B, Levon K (2004) The role of cysteine residues in electrochemistry of cytochrome c at a polyaniline modified electrode. Synth Met 142:137–141

    Article  CAS  Google Scholar 

  26. Lin Z, Pan D, Hu T, Liu Z, Su X (2015) A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots. Microchim Acta 182:1933–1939

    Article  CAS  Google Scholar 

  27. Wang GL, Hu XL, Wu XM, Dong YM, Li ZJ (2016) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183:765–771

    Article  CAS  Google Scholar 

  28. Xu Z, Huang X, Dong C, Ren J (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  29. Zhang H, Shuang S, Sun L, Chen A, Qin Y (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  30. Shangguan L, Zhu W, Xue Y, Liu S (2015) Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites. Biosens Bioelectron 64:611–617

    Article  CAS  Google Scholar 

  31. Zhang L, Li L (2016) Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183:485–490

    Article  CAS  Google Scholar 

  32. Sinha B, Ramulu TS, Kim KW, Venu R, Lee JJ, Kim CG (2014) Planar hall magnetoresistive aptasensor for thrombin detection. Biosens Bioelectron 59:140–144

    Article  CAS  Google Scholar 

  33. Cunningham JC, Brenes NJ, Crooks RM (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86:6166–6170

    Article  CAS  Google Scholar 

  34. Li Y, Ling L (2015) Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182:1849–1854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21305039, 21475041, 21175042 and 21075036), the Foundation of Hunan Province (14JJ3097), the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, the Foundation of Hunan Provincial Education Department for Young Scholar, and the Foundation of Hunan Agricultural University (12YJ05). Thank Dr. Rui Tan (Postdoctoral associate of Department of Chemistry, Brown University) for checking the language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohong Su or Qingji Xie.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Xu, X., Xu, H. et al. Amperometric thrombin aptasensor using a glassy carbon electrode modified with polyaniline and multiwalled carbon nanotubes tethered with a thiolated aptamer. Microchim Acta 184, 1677–1682 (2017). https://doi.org/10.1007/s00604-017-2164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2164-9

Keywords

Navigation