Skip to main content
Log in

An isothermal strand displacement amplification strategy for nucleic acids using junction forming probes and colorimetric detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for DNA target recognition and signal amplification that is based on the target-induced formation of a three way junction. The subsequent assembly of two DNA probes releases the inhibitory strand and triggers a downstream strand displacement amplification. This causes the formation of a G-rich single sequence that binds to a hemin monomer with its peroxidase-mimicking properties. The resulting peroxidase (POx) activity is quantified by using H2O2 and TMB as the substrate. In the presence of an inhibitor, in contrast, the POx-like activity is strongly reduced. This forms the basis for a highly sensitive DNA assay. It has a 0.8 pM detection limit when operated at a wavelength of 450 nm and was applied to the isothermal determination of target DNA with high selectivity.

Schematic of the assay: Introduction of target results in the formation of a three way junction. The subsequent assembly of two probes releases the inhibitory strand and triggers a downstream strand displacement amplification, generating amount of G-rich single sequence which causes peroxidase-mimicking activity on binding to a hemin monomer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu J, Kodzius R, Cao W, Wen W (2014) Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchim Acta 181:1611–1631. doi:10.1007/s00604-013-1140-2

    Article  CAS  Google Scholar 

  2. Khodakov D, Wang C, Zhang DY (2016) Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.04.005

    Google Scholar 

  3. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  4. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88:7276–7280

    Article  CAS  Google Scholar 

  5. Kevil CG, Walsh L, Laroux FS, Kalogeris T, Grisham MB, Alexander JS (1997) An improved, rapid northern protocol. Biochem Biophys Res Commun 238:277–279. doi:10.1006/bbrc.1997.7284

    Article  CAS  Google Scholar 

  6. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45: 385–386, 388, 390. doi:10.2144/000112811

  7. Bilitewski U (2009) DNA microarrays: an introduction to the technology. Methods Mol Biol 509:1–14. doi:10.1007/978-1-59745-372-1_1

    Article  CAS  Google Scholar 

  8. Demidov VV, Frank-Kamenetskii MD (2004) Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem Sci 29:62–71. doi:10.1016/j.tibs.2003.12.007

    Article  CAS  Google Scholar 

  9. Kolpashchikov DM (2010) Binary probes for nucleic acid analysis. Chem Rev 110:4709–4723. doi:10.1021/cr900323b

    Article  CAS  Google Scholar 

  10. Marti AA, Jockusch S, Stevens N, Ju J, Turro NJ (2007) Fluorescent hybridization probes for sensitive and selective DNA and RNA detection. Acc Chem Res 40:402–409. doi:10.1021/ar600013q

    Article  CAS  Google Scholar 

  11. Tang S, Tong P, Li H, Gu F, Zhang L (2013) The three-way junction DNAzyme based probe for label-free colorimetric detection of DNA. Biosens Bioelectron 41:397–402. doi:10.1016/j.bios.2012.08.056

    Article  CAS  Google Scholar 

  12. Nakayama S, Yan L, Sintim HO (2008) Junction probes - sequence specific detection of nucleic acids via template enhanced hybridization processes. J Am Chem Soc 130:12560–12561. doi:10.1021/ja803146f

    Article  CAS  Google Scholar 

  13. Zhang J, Chen JH, Chen RC, Chen GN, Fu FF (2009) Sequence-specific detection of trace DNA via a junction-probe electrochemical sensor employed template-enhanced hybridization strategy. Biosens Bioelectron 25:815–819. doi:10.1016/j.bios.2009.08.032

    Article  CAS  Google Scholar 

  14. Wang Z, Zhang J, Guo Y, Wu X, Yang W, Xu L, Chen J, Fu F (2013) A novel electrically magnetic-controllable electrochemical biosensor for the ultra sensitive and specific detection of attomolar level oral cancer-related microRNA. Biosens Bioelectron 45:108–113. doi:10.1016/j.bios.2013.02.007

    Article  CAS  Google Scholar 

  15. Li F, Lin Y, Le XC (2013) Binding-induced formation of DNA three-way junctions and its application to protein detection and DNA strand displacement. Anal Chem 85:10835–10841. doi:10.1021/ac402179a

    Article  CAS  Google Scholar 

  16. Du Y, Jiang H, Huo Y, Han G, Kong D (2016) Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase. Biosens Bioelectron 77:971–977. doi:10.1016/j.bios.2015.10.080

    Article  CAS  Google Scholar 

  17. Zhang H, Liu Y, Gao J, Zhen J (2015) A sensitive SERS detection of miRNA using a label-free multifunctional probe. Chem Commun 51:16836–16839. doi:10.1039/C5CC06225J

    Article  CAS  Google Scholar 

  18. Zhao Y, Zhou L, Tang Z (2013) Cleavage-based signal amplification of RNA. Nat Commun 4:1493. doi:10.1038/ncomms2492

    Article  Google Scholar 

  19. Shi C, Liu Q, Ma C, Zhong W (2014) Exponential strand-displacement amplification for detection of MicroRNAs. Anal Chem 86:336–339. doi:10.1021/ac4038043

    Article  CAS  Google Scholar 

  20. Li D, Cheng W, Yan Y, Zhang Y, Yin Y, Ju H, Ding S (2016) A colorimetric biosensor for detection of attomolar microRNA with a functional nucleic acid-based amplification machine. Talanta 146:470–476. doi:10.1016/j.talanta.2015.09.010

    Article  CAS  Google Scholar 

  21. Ma C, Han D, Shi C (2014) A new isothermal nucleic acid detection strategy mediated by a double-nicked beacon. Chem Commun 50:3799. doi:10.1039/c3cc49841g

    Article  CAS  Google Scholar 

  22. Cheng F, Jiang N, Li X, Zhang L, Hu L, Chen X, Jiang L, Abdel-Halim ES, Zhu J (2016) Target-triggered triple isothermal cascade amplification strategy for ultrasensitive microRNA-21 detection at sub-attomole level. Biosens Bioelectron 85:891–896. doi:10.1016/j.bios.2016.06.008

    Article  CAS  Google Scholar 

  23. Zhang Q, Chen F, Xu F, Zhao Y, Fan C (2014) Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid MicroRNA detection at attomolar level. Anal Chem 86:8098–8105. doi:10.1021/ac501038r

    Article  CAS  Google Scholar 

  24. Zhao Y, Qi L, Chen F, Zhao Y, Fan C (2013) Highly sensitive detection of telomerase activity in tumor cells by cascade isothermal signal amplification based on three-way junction and base-stacking hybridization. Biosens Bioelectron 41:764–770. doi:10.1016/j.bios.2012.10.009

    Article  CAS  Google Scholar 

  25. Wang X, Liu W, Yin B, Yu P, Duan X, Liao Z, Liu C, Sang Y, Zhang G, Chen Y, Tao Z (2016) Colorimetric detection of gene transcript by target-induced three-way junction formation. Talanta 158:1–5. doi:10.1016/j.talanta.2016.05.039

    Article  CAS  Google Scholar 

  26. Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA-aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  Google Scholar 

  27. Pelossof G, Tel-Vered R, Elbaz J, Willner I (2010) Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal Chem 82:4396–4402. doi:10.1021/ac100095u

    Article  CAS  Google Scholar 

  28. Wang Q, Xu N, Gui Z, Lei J, Ju H, Yan F (2014) Catalytic activity of a dual-hemin labelled oligonucleotide: conformational dependence and fluorescent DNA sensing. Chem Commun 50:15362–15365. doi:10.1039/C4CC07298G

    Article  CAS  Google Scholar 

  29. Grinberg LN, O'Brien PJ, Hrkal Z (1999) The effects of heme-binding proteins on the peroxidative and catalatic activities of hemin. Free Radic Biol Med 27:214–219

    Article  CAS  Google Scholar 

  30. Miller YI, Felikman Y, Shaklai N (1995) The involvement of low-density lipoprotein in hemin transport potentiates peroxidative damage. Biochim Biophys Acta 1272:119–127

    Article  Google Scholar 

  31. Rus’ OB, Puchkaev AV, Metelitsa DI (1996) Methemalbumin--a biocatalyst of aromatic amine oxidation by hydrogen peroxide. Biokhimiia 61:1813–1824

    Google Scholar 

  32. Marras SA, Kramer FR, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal 14:151–156

    Article  CAS  Google Scholar 

  33. Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370. doi:10.1038/86762

    Article  CAS  Google Scholar 

  34. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245. doi:10.1038/nrc2091

    Article  CAS  Google Scholar 

  35. Edwards PA (2009) Fusion genes and chromosome translocations in the common epithelial cancers. J Pathol n/a-n/a. doi:10.1002/path.2632

    Google Scholar 

  36. Lewis R (2004) Human genetics: concepts and applications, 6th edn. McGraw-Hill, Boston

  37. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB, Khan AR, Dirks RM, Pierce NA (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173. doi:10.1002/jcc.21596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 81271917), Natural Science Foundation of Zhejiang province (Grant nos. LY14H200002, LY15H200002 and LY16H160023). We thank Clinical Research Centre from the Second Affiliated Hospital of Zhejiang University School of Medicine for essential technical supports.

Author information

Authors and Affiliations

Authors

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Xuchu Wang and Weiwei Liu contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liu, W., Yin, B. et al. An isothermal strand displacement amplification strategy for nucleic acids using junction forming probes and colorimetric detection. Microchim Acta 184, 1603–1610 (2017). https://doi.org/10.1007/s00604-017-2158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2158-7

Keywords

Navigation