Microchimica Acta

, Volume 184, Issue 5, pp 1529–1537 | Cite as

Trace determination of lead(II) ions by using a magnetic nanocomposite of the type Fe3O4/TiO2/PPy as a sorbent, and FAAS for quantitation

  • Ali MehdiniaEmail author
  • Zeynab Shoormeij
  • Ali Jabbari
Original Paper


The authors describe a magnetic nanoadsorbent consisting of magnetite nanoparticles coated first with titanium dioxide and then with polypyrrole (PPy). It is shown to be a viable material for magnetic solid-phase extraction of trace amount of Pb(II). The magnetic titanium dioxide nanoparticles were synthesized first and then modified with PPy via in-situ electropolymerization. The properties, morphology, and composition of the sorbent were characterized by FTIR, scanning electron microscopy, energy-dispersive X-ray analysis and vibrating sample magnetometry. The effects of pH value, extraction time, type and concentration of eluent, and of sample volume were optimized. Under the optimum conditions, the limit of detection (for S/N = 3) is 0.28 μg⋅L−1. The maximum adsorption capacity of the adsorbent is 126 mg⋅g−1 of Pb(II). The accuracy of the method was investigated by analysis of a Certified Reference Material and the obtained value (0.119 μg⋅g−1) was in good agreement with the certified value (0.120 μg⋅g−1). The method was successfully applied to the determination of Pb(II) in a gastropod and spiked environmental and marine water samples. It gave recoveries in the range from 94.4 to 103.1%.

Graphical abstract

Magnetic titanium dioxide nanoparticles were synthesized and modified with PPy via in situ polymerization. The Fe3O4/TiO2/PPy nanocomposite was used for solid-phase extraction and pre-concentration of trace amount of lead(II) ions in complex matrices.


MSPE Magnetic nanocomposite In-situ polymerization Scanning electron microscopy EDX FTIR Vibrating sample magnetometry 


Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2156_MOESM1_ESM.docx (84 kb)
ESM 1 (DOCX 84 kb)


  1. 1.
    Xu J, Wu P, Ye EC, Yuan BF, Feng YQ (2016) Metal oxides in sample pretreatment: a review. Trends Anal Chem 80:41–56. doi: 10.1016/j.trac.2016.02.027 CrossRefGoogle Scholar
  2. 2.
    Habila M, Yilmaz E, ALOthman ZA, Soylak M (2014) Flame atomic absorption spectrometric determination of Cd, Pb, and Cu in food samples after preconcentration using 4-(2-thiazolylazo) resorcinol-modified activated carbon. J Ind Eng Chem 20:3989–3993. doi: 10.1016/j.jiec.2013.12.101 CrossRefGoogle Scholar
  3. 3.
    Nawrocki J, Dunlap C, McCormick A, Carr PW (2004) Part I. Chromatography using ultra-stable metal oxide-based stationary phases for HPLC. J Chromatogr A 1028:1–30. doi: 10.1016/j.chroma.2003.11.052 CrossRefGoogle Scholar
  4. 4.
    Figueroa A, Corradini C, Feibush B, Karger BL (1986) High-performance immobilized-metal affinity chromatography of proteins of iminodiacetic acid silica-based bonded phases. J Chromatogr A 371:335–352. doi: 10.1016/S0021-9673(01)94717-X CrossRefGoogle Scholar
  5. 5.
    Liang P, Ding Q, Liu Y (2006) Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn. J Sep Sci 29:242–247. doi: 10.1002/jssc.200500301 CrossRefGoogle Scholar
  6. 6.
    Liang P, Qin Y, Hu B, Li C, Peng T, Jiang Z (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368:638–640. doi: 10.1007/s00216000054 CrossRefGoogle Scholar
  7. 7.
    Li XS, Xu LD, Shan YB, Yuan BF, Feng YQ (2012) Preparation of magnetic poly(diethyl vinylphosphonate-co-ethylene glycol dimethacrylate) for the determination of chlorophenols in water samples. J Chromatogr A 1265:24–30. doi: 10.1016/j.chroma.2012.09.083 CrossRefGoogle Scholar
  8. 8.
    Huang D, Deng C, Zhang X (2014) Functionalized magnetic nanomaterials as solid- phase extraction adsorbents for organic pollutants in environmental analysis: a review. Anal Methods 6:7130–7141. doi: 10.1039/C4AY01100G CrossRefGoogle Scholar
  9. 9.
    Manzoori JL, Amjadi M, Hallaj T (2009) Preconcentration of trace cadmium and manganese using 1-(2-pyridylazo)-2-naphthol-modified TiO2 nanoparticles and their determination by flame atomic absorption spectrometry. Int J Environ Anal Chem 89:749–758. doi: 10.1080/03067310902736955 CrossRefGoogle Scholar
  10. 10.
    Ma X, Huang B, Cheng M (2007) Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals 26:541–546. doi: 10.1016/S1001-0521(08)60004-2 CrossRefGoogle Scholar
  11. 11.
    Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K (2013) CeO2–TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062. doi: 10.1021/es401681y CrossRefGoogle Scholar
  12. 12.
    Lian N, Chang X, Zheng H, Wang S, Cui Y, Zhai Y (2005) Application of dithizone-modified TiO2 nanoparticles in the Preconcentration of trace chromium and lead from sample solution and determination by inductively coupled plasma atomic emission spectrometry. Microchim Acta 151:81–88. doi: 10.1007/s00604-005-0381-0 CrossRefGoogle Scholar
  13. 13.
    Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C (2013) Polypyrrole-decorated Ag TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible light illumination. ACS Appl Mater Interfaces 5:6201–6207. doi: 10.1021/am401167y CrossRefGoogle Scholar
  14. 14.
    Zhang Z, Yuan Y, Liang L, Cheng Y, Xu H, Shi G, Jin L (2008) Preparation and photoelectrochemical properties of a hybrid electrode composed of polypyrrole encapsulated in highly ordered titanium dioxide nanotube array. Thin Solid Films 516:8663–8667. doi: 10.1016/j.tsf.2008.04.079 CrossRefGoogle Scholar
  15. 15.
    Alumaa A, Hallik A, Sammelselg V, Tamm J (2007) On the improvement of stability of polypyrrole films in aqueous solutions. Synth Met 157:485–491. doi: 10.1016/j.synthmet.2007.05.006 CrossRefGoogle Scholar
  16. 16.
    Farooq U, Khan MA, Athar M, Kozinski JA (2011) Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chem Eng J 171:400–410. doi: 10.1016/j.cej.2011.03.094 CrossRefGoogle Scholar
  17. 17.
    Bianchin JN, Martendal E, Mior R, Alves VN, Araújo CST, Coelho NMM, Carasek E (2009) Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta 78:333–336. doi: 10.1016/j.talanta.2008.11.012 CrossRefGoogle Scholar
  18. 18.
    Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) Improved removal of lead (II) from water using a polymer-based graphene oxide nanocomposite. J Mater Chem A 11:3789–3796. doi: 10.1039/C3TA01616A CrossRefGoogle Scholar
  19. 19.
    Wang Y, Chen H, Tang J, Ye G, Ge H, Hu X (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197. doi: 10.1016/j.foodchem.2015.02.080 CrossRefGoogle Scholar
  20. 20.
    Mehdinia A, Kayyal TB, Jabbari A, Aziz-Zanjani MO, Ziaei E (2013) Magnetic molecularly imprinted nanoparticles based on graftingpolymerization for selective detection of 4-nitrophenol in aqueous samples. J Chromatogr A 1283:82–88. doi: 10.1016/j.chroma.2013.01.093 CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhang M, Guo M, Wang X (2009a) Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Rare Met 28:423–427. doi: 10.1007/s12598-009-0082-7 CrossRefGoogle Scholar
  22. 22.
    Mehdinia A, Asiabi M, Jabbari A (2015) Trace analysis of Pt (IV) metal ions in roadside soil and water samples by Fe3O4/graphene/polypyrrole nanocomposite as a solid-phase extraction sorbent followed by atomic absorption spectrometry. Int J Environ Anal Chem 95:1099–1111. doi: 10.1080/03067319.2015.1085523 CrossRefGoogle Scholar
  23. 23.
    Li J, Feng J, Yan W (2013) Synthesis of polypyrrole-modified TiO2 composite adsorbent and its adsorption performance on acid red G. J Appl Polym Sci 128:3231–3239. doi: 10.1002/app.38525 CrossRefGoogle Scholar
  24. 24.
    Cheng Q, He Y, Pavlinek V, Li C, Saha P (2008) Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties. Synth Met 158:953–957. doi: 10.1016/j.synthmet.2008.06.022 CrossRefGoogle Scholar
  25. 25.
    Xu JC, Liu WM, Li HL (2005a) Titanium dioxide doped polyaniline. Mater Sci Eng C Mater Biol Appl 25:444–447. doi: 10.1016/j.msec.2004.11.003 CrossRefGoogle Scholar
  26. 26.
    George S (2000) Infrared and Raman characteristic group frequencies tables and charts, third edn. Wiley, New YorkGoogle Scholar
  27. 27.
    Xie Y, Du H (2012) Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid. J Solid State Electrochem 16:2683–2689. doi: 10.1007/s10008-012-1696-5 CrossRefGoogle Scholar
  28. 28.
    Xu JC, Liu WM, Li HL (2005b) Titanium dioxide doped polyaniline. Mater Sci Eng C 25:444–447. doi: 10.1016/j.msec.2004.11.003 CrossRefGoogle Scholar
  29. 29.
    Behbahani M, Bide Y, Bagheri S, Salarian M, Omidi F, Nabid MR (2016) A pH responsive nanogel composed of magnetite, silica and poly(4-vinylpyridine) for extraction of Cd(II), Cu(II), Ni(II) and Pb(II). Microchim Acta 183:111–121. doi: 10.1007/s00604-015-1603-8 CrossRefGoogle Scholar
  30. 30.
    Pytlakowska K (2016) Dispersive micro solid-phase extraction of heavy metals as their complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol using graphene oxide nanoparticles. Microchim Acta 183:91–99. doi: 10.1007/s00604-015-1596-3 CrossRefGoogle Scholar
  31. 31.
    Suleiman JS, Hu B, Peng H, Huang C (2009) Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid phase extraction with bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77:1579–1583. doi: 10.1016/j.talanta.2008.09.049 CrossRefGoogle Scholar
  32. 32.
    Barbosa AF, Segatelli MG, Pereira AC, Santos AS, Kubota LT, Luccas PO, Tarley CRT (2007) Solid-phase extraction system for Pb2+ ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 71:1512–1519. doi: 10.1016/j.talanta.2006.07.026 CrossRefGoogle Scholar
  33. 33.
    Li Z, Chang X, Hu Z, Huang X, Zou X, Wu Q, Nie R (2009b) Zincon-modified activated carbon for solid-phase extraction and preconcentration of trace lead and chromium from environmental samples. J Hazard Mater 166:133–137. doi: 10.1016/j.jhazmat.2008.11.006 CrossRefGoogle Scholar
  34. 34.
    Karimi M, Shabani AM, Dadfarnia S (2015) Deep eutectic solvent-mediated extraction for ligand-less preconcentration of lead and cadmium from environmental samples using magnetic nanoparticles. Microchim Acta 183:563–571. doi: 10.1007/s00604-015-1671-9
  35. 35.
    Pirouz MJ, Beyki MH, Shemirani F (2015) Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem 170:131–137. doi: 10.1016/j.foodchem.2014.08.046 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Marine Living Science, Ocean Science Research CenterIranian National Institute for Oceanography and Atmospheric scienceTehranIran
  2. 2.Department of Chemistry, Faculty of ScienceK. N. Toosi University of TechnologyTehranIran

Personalised recommendations