Microchimica Acta

, Volume 184, Issue 5, pp 1481–1488 | Cite as

Voltammetric determination of dihydroxybenzene isomers using a disposable pencil graphite electrode modified with cobalt-phthalocyanine

  • Mihaela Buleandra
  • Andreea Alexandra Rabinca
  • Irinel Adriana Badea
  • Adriana Balan
  • Ioan Stamatin
  • Constantin Mihailciuc
  • Anton Alexandru Ciucu
Original Paper


A novel voltammetric assay for the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RS) by using an electrochemically treated pencil graphite electrode modified with cobalt-phthalocyanine is described. Differential pulse voltammetric results showed three well-distinct oxidation peaks for HQ, CC and RS at 102 mV, 203 mV and 591 mV (vs. Ag/AgCl), respectively. Thus, the method can be applied to direct simultaneous determination without previous separation. The detection limits are 3.38 × 10−7 mol L−1 for HQ, 3.40 × 10−7 mol L−1 for CC and 7.23 × 10−7 mol L−1 for RS. The method was successfully applied to the direct determination of dihydroxybenzene isomers in tea samples, and the results were compared with chromatographic data.

Graphical abstract

A novel assay for electrochemical detection of hydroquinone (HQ), catechol (CC) and resorcinol (RS) based on an electrochemically treated pencil graphite electrode (PGE*) modified with cobalt phthalocyanine (CoPC) was investigated. The differential pulse voltammetric (DPV) method provide a new means for direct determination of a multi-component system.


Sensor Mediator Electrochemically treated Electrooxidation Simultaneous determination Tea sample 



This work was supported by Romanian Executive Unit for Funding Higher Education, Research, Development and Innovation (UEFISCDI), Grants numbers 251/2011, and 64/2011.

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

604_2017_2153_MOESM1_ESM.docx (107 kb)
ESM 1 (DOCX 107 kb)


  1. 1.
    Hu X, Li J, Wang J (2012) Structural transformation of carbon electrodes for simultaneous determination of dihydroxybenzene isomers. Electrochem Commun 21:73–76. doi: 10.1016/j.elecom.2012.04.031 CrossRefGoogle Scholar
  2. 2.
    Buleandra M, Rabinca AA, Mihailciuc C, Balan A, Nichita C, Stamatin I, Ciucu AA (2014) Screen-printed Prussian Blue modified electrode for simultaneous detection of hydroquinone and catechol. Sens Actuat B 203ː824–832. doi: 10.1016/j.snb.2014.07.043
  3. 3.
    Sun YG, Cui H, Li YH, Lin XQ (2000) Determination of some catechol derivatives by a flow injection electrochemiluminescent inhibition method. Talanta 53:661–666. doi: 10.1016/S0039-9140(00)00550-6 CrossRefGoogle Scholar
  4. 4.
    Lin H, Gan T, Wu K (2009) Sensitive and rapid determination of catechol in tea samples using mesoporous Al-doped silica modified electrode. Food Chem 113:701–704. doi: 10.1016/j.foodchem.2008.07.073 CrossRefGoogle Scholar
  5. 5.
    Asan A, Isildak I (2003) Determination of major phenolic compounds in water by reversed-phase liquid chromatography after pre-column derivatization with benzoyl chloride. J Chromatogr A 988:145–149. doi: 10.1016/S0021-9673(02)02056-3 CrossRefGoogle Scholar
  6. 6.
    Pistonesi M, Di Nezio M, Centurión M, Palomeque M, Lista A, Band BF (2006) Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 69:1265–1268. doi: 10.1016/j.talanta.2005.12.050 CrossRefGoogle Scholar
  7. 7.
    Nagaraja P, Vasantha R, Sunitha K (2001) A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta 55:1039–1046. doi: 10.1016/S0039-9140(01)00438-6 CrossRefGoogle Scholar
  8. 8.
    Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141:90–97. doi: 10.1016/S0039-9140(01)00438-6 CrossRefGoogle Scholar
  9. 9.
    Yin HS, Zhang QM, Zhou YL, Ma Q, Liu T, Zhu LS, Aia SY (2011) Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene-chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim Acta 56:2748–2753. doi: 10.1016/j.electacta.2010.12.060 CrossRefGoogle Scholar
  10. 10.
    Dong JP, Qu XM, Wang LJ (2008) Electrochemistry of nitrogen-doped carbon nanotubes (CNX) with different nitrogen content and its application in simultaneous determination of dihydroxybenzene isomers. Electroanalysis 20:1981–1986. doi: 10.1002/elan.200804274 CrossRefGoogle Scholar
  11. 11.
    Wang ZH, Li SJ, Lv QZ (2007) Simultaneous determination of dihydroxybenzene isomers at single-wall carbon nanotube electrode. Sens Actuat B 127:420–425. doi: 10.1016/j.snb.2007.04.037 CrossRefGoogle Scholar
  12. 12.
    Han L, Zhang X (2009) Simultaneous voltammetry determination of dihydroxybenzene isomers by nanogold modified electrode. Electroanalysis 21:124–129. doi: 10.1002/elan.200804403 CrossRefGoogle Scholar
  13. 13.
    Zhang X, Duan S, Xu XM, Xu S, Zhou CL (2011) Electrochemical behavior and simultaneous determination of dihydroxybenzene isomers at a functionalized SBA-15 mesoporous silica modified carbon paste electrode. Electrochim Acta 56:1981–1987. doi: 10.1016/j.electacta.2010.11.048 CrossRefGoogle Scholar
  14. 14.
    Huang KJ, Wang L, Liu YJ, Gan T, Liu YM, Wang LL, Fan Y (2013) Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim Acta 107:379–387. doi: 10.1016/j.electacta.2013.06.060 CrossRefGoogle Scholar
  15. 15.
    Zhu S, Gao W, Zhang L, Zhao J, Xu G (2014) Simultaneous voltammetric determination of dihydroxybenzeneisomers at single-walled carbon nanohorn modified glassy carbon electrode. Sens Actuat B 198:388–394. doi: 10.1016/j.electacta.2013.06.060 CrossRefGoogle Scholar
  16. 16.
    Cui Y, Zhu Y, Li Y, Wang W, Xu F (2014) Electrochemical behavior of dihydroxybenzene isomers at MWCNTs modified electrode and simultaneous determination in neutral condition. Res Chem Intermed 40:3153–3162. doi: 10.1007/s11164-013-1161-9 CrossRefGoogle Scholar
  17. 17.
    Wang Y, Qu J, Li S, Dong Y, Qu J (2015) Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with gold nanoparticles, ZnS/NiS@ ZnS quantum dots and L-cysteine. Microchim Acta 182:2277–2283. doi: 10.1007/s00604-015-1568-7 CrossRefGoogle Scholar
  18. 18.
    Liu L, Ma Z, Zhu X, Alshahrani LA, Tie S, Nan J (2016) A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim Acta 183:3293–3301. doi: 10.1007/s00604-016-1973-6 CrossRefGoogle Scholar
  19. 19.
    Saravanan KR, Sathyamoorthi S, Velayutham D, Suryanarayanan V (2012) Voltammetric investigations on the relative deactivation of boron-doped diamond, glassy carbon and platinum electrodes during the anodic oxidation of substituted phenols in room temperature ionic liquids. Electrochim Acta 69:71–78. doi: 10.1016/j.electacta.2012.02.077 CrossRefGoogle Scholar
  20. 20.
    Akanda MR, Sohail M, Aziz MA, Kawde AN (2016) Recent advances in nanomaterial-modified pencil graphite electrodes for electroanalysis. Electroanalysis 28:408–424. doi: 10.1002/elan.201500374 CrossRefGoogle Scholar
  21. 21.
    Balan I, David IG, David V, Stoica AI, Mihailciuc C, Stamatin I, Ciucu AA (2011) Electrocatalyticvoltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. J Electroanal Chem 654:8–12. doi: 10.1016/j.jelechem.2011.02.002 CrossRefGoogle Scholar
  22. 22.
    David IG, Bizgan AMC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA (2015) Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behavior on a disposable graphite electrode. Food Chem 173:1059–1065. doi: 10.1016/j.foodchem.2014.10.139 CrossRefGoogle Scholar
  23. 23.
    Zaidan LEMC, Napoleão DC, Guimarães G, Barbosa CMBM, Benachour M, Silva VL (2013) Validation methodology for identification and measurement of phenolic compounds in oil refinery effluent by HPLC. Braz J Petroleum and Gas 7:95–106. doi: 10.5419/bjpg2013-0008 CrossRefGoogle Scholar
  24. 24.
    Moraes FC, Cabral MF, Machado SAS, Mascaro LH (2008) Electrocatalytic behavior of glassy carbon electrodes modified with multiwalled carbon nanotubes and cobalt phthalocyanine for selective analysis of dopamine in presence of ascorbic acid. Electroanalysis 20:851–857. doi: 10.1002/elan.200704107 CrossRefGoogle Scholar
  25. 25.
    Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393. doi: 10.1016/S0022-0728(74)80448-1 CrossRefGoogle Scholar
  26. 26.
    Mobin SM, Sanghavi BJ, Srivastava AK, Mathur P, Lahiri GK (2010) Biomimetic sensor for certain phenols employing a copper(II) complex. Anal Chem 82:5983–5992. doi: 10.1021/ac1004037 CrossRefGoogle Scholar
  27. 27.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. doi: 10.1016/S0022-0728(79)80075-3 CrossRefGoogle Scholar
  28. 28.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. John Wiley & Sons Inc., New York, p 236Google Scholar
  29. 29.
    Cesarino I, Moraes FC, Ferreira TCR, Lanza MRV, Machado SAS (2012) Real-time electrochemical determination of phenolic compounds after benzene oxidation. J Electroanal Chem 672:34–39. doi: 10.1016/j.jelechem.2012.03.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Mihaela Buleandra
    • 1
  • Andreea Alexandra Rabinca
    • 1
    • 2
  • Irinel Adriana Badea
    • 1
  • Adriana Balan
    • 2
  • Ioan Stamatin
    • 2
  • Constantin Mihailciuc
    • 3
  • Anton Alexandru Ciucu
    • 1
  1. 1.Faculty of Chemistry, Department of Analytical ChemistryUniversity of BucharestBucharestRomania
  2. 2.Faculty of Physics, 3nano-SAE Research CentreUniversity of BucharestBucharestRomania
  3. 3.Faculty of Chemistry, Department of Physical ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations