Microchimica Acta

, Volume 184, Issue 5, pp 1379–1387 | Cite as

Photoelectrochemical determination of Hg(II) via dual signal amplification involving SPR enhancement and a folding-based DNA probe

  • Yushu Shi
  • Guoqing Zhang
  • Jiaojiao Li
  • Yong Zhang
  • Yanbao Yu
  • Qin Wei
Original Paper


The authors describe a highly sensitive and selective photoelectrochemical (PEC) assay for mercury(II) ions. It is based on a dual signal amplification strategy. The first enhancement results from the surface plasmon resonance (SPR) of Au@Ag nanoparticles (NPs) absorbed on MoS2 nanosheets. Here, the injection of hot electrons of Au@Ag NPs into MoS2 nanosheets produces a strong photocurrent, while background signals are strongly reduced. The second enhancement results from the use of a thymine rich ct-DNA aptamer attached to the Au@Ag-MoS2 nanohybrid. The DNA specifically binds Hg(II) ions to form thymine-Hg(II)-thymine (T-Hg-T) complexes. This leads to the formation of a hairpin-shaped dsDNA structure. The use of a CdSe quantum dot label at the terminal end of the ct-DNA further facilitates electron–hole separation. The photocurrent of the detector is measured as a function of Hg(II) concentration at a bias voltage of 0.1 V and under irradiation of 430 nm light. Due to the two-fold amplification strategy presented here, the linear range extends from 10 pmol·L−1 to 100 nmol·L−1, with a detection limit of 5 pmol·L−1 (at S/N = 3).

Graphical Abstract

The injection of hot electrons of Au@Ag into MoS2 produces a strong photocurrent, and the formation of thymine-Hg(II)-thymine further facilitates electron–hole separation by CdSe. This dual signal amplification strategy is used to detect Hg(II) ions via a photoelectrochemical assay.


Au@Ag MoS2 T-Hg-T Nanosheets CdSe quantum dots Nanohybrid Au@Ag-MoS2 Indium tin oxide HRTEM Electrochemical impedance spectroscopy 



This study was supported by the Natural Science Foundation of China (No. 21575050), the Natural Science Foundation of Shandong Province (No.ZR2013BL003) and the Doctoral Science Foundation of University of Jinan (No. XBS1658).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2141_MOESM1_ESM.docx (107 kb)
ESM 1 (DOCX 107 kb)


  1. 1.
    Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356CrossRefGoogle Scholar
  2. 2.
    Zhao M, Fan G, Chen J, Shi J, Zhu J (2015) Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal Chem 87:12340–12347CrossRefGoogle Scholar
  3. 3.
    Harris H, Pickering I, George G (2003) The chemical form of mercury in fish. Science 301:1203CrossRefGoogle Scholar
  4. 4.
    Liu M, Wang ZY, Zong SF, Chen H, Zhu D, Wu L, Hu GH, Cui YP (2014) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide- functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl Mater Interfaces 6:7371–7379CrossRefGoogle Scholar
  5. 5.
    Huang C, Yang Z, Lee K, Chang H (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed 46:6948–6952CrossRefGoogle Scholar
  6. 6.
    Li T, Dong SJ, Wang EK (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149CrossRefGoogle Scholar
  7. 7.
    Zhu ZQ, Su YY, Li J, Li D, Zhang J, Song SP, Zhao Y, Li GX, Fan CH (2009) Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem 81:7660–7666CrossRefGoogle Scholar
  8. 8.
    Wang LN, Liu FY, Sui N, Liu MH, Yu WW (2016) A colorimetric assay for Hg(II) based on the use of a magnetic aptamer and a hybridization chain reaction. Microchim Acta 183:2855CrossRefGoogle Scholar
  9. 9.
    Senthamizhan A, Celebioglu A, Uyar T (2015) Real-time selective visual monitoring of Hg2+ detection at ppt level: an approach to lighting electrospun nanofibers using gold nanoclusters. Sci Rep 5:10403CrossRefGoogle Scholar
  10. 10.
    Zarlaida F, Adlim M (2016) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184:45–58CrossRefGoogle Scholar
  11. 11.
    Cai LF, Guo ZH, Zheng XW (2016) Electrochemiluminescent detection of Hg(II) by exploiting the differences in the adsorption of free T-rich oligomers and Hg(II) loaded T-rich oligomers on silica nanoparticles doped with Ru(bpy)3 2+. Microchim Acta 183:2345–2351CrossRefGoogle Scholar
  12. 12.
    Tang J, Huang YP, Zhang CC, Liu HQ, Tang DP (2016) DNA-based electrochemical determination of mercury(II) by exploiting the catalytic formation of gold amalgam and of silver nanoparticles. Microchim Acta 183:1805–1812CrossRefGoogle Scholar
  13. 13.
    Zhao W, Xu J, Chen H (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44:729–741CrossRefGoogle Scholar
  14. 14.
    Yang ZQ, Wang FR, Wang M, Yin HS, Ai SY (2015) A novel signal-on strategy for M.Sss/ methyltransfease activity analysis and inhibitor screening based on photoelectrochemical immunosensor. Biosens Bioelectron 66:109–114CrossRefGoogle Scholar
  15. 15.
    Fabiana A, Stefano C, Viviana S, Danila M (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063CrossRefGoogle Scholar
  16. 16.
    Ge L, Wang WX, Hou T, Li F (2016) A versatile immobilization-free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme-free cascaded quadratic amplification strategy. Biosens Bioelectron 77:220–226CrossRefGoogle Scholar
  17. 17.
    Zhang XR, Liu MS, Liu HX, Zhang SS (2014) Low-toxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens Bioelectron 56:307–312CrossRefGoogle Scholar
  18. 18.
    Chamier J, Leaner J, Crouch A (2010) Photoelectrochemical determination of inorganic mercury in aqueous solutions. Anal Chim Acta 661:91–96CrossRefGoogle Scholar
  19. 19.
    Tang Q, Jiang D (2015) Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem Mater 27:3743–3748CrossRefGoogle Scholar
  20. 20.
    Zang Y, Lei JP, Hao Q, Ju HX (2016) CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens Bioelectron 77:557–564CrossRefGoogle Scholar
  21. 21.
    Scharf T, Goeke R, Kotula P, Prasad S (2013) Synthesis of Au-MoS2 nanocomposites: thermal and friction-induced changes to the structure. ACS Appl Mater Interfaces 5:11762–11767CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Shoaiba A, Li JJ, Ji MW, Liu JJ, Xu M, Tong B, Zhang JT, Wei Q (2016) Plasmon enhanced photoelectrochemical sensing of mercury (II) ions in human serum based on Au@Ag nanorods modified TiO2 nanosheets film. Biosens Bioelectron 79:866–873CrossRefGoogle Scholar
  23. 23.
    Shuang S, Lv RT, Xie Z, Zhang ZJ (2016) Surface plasmon enhanced photocatalysis of Au/Pt-decorated TiO2 nanopillar arrays. Sci Rep 6:26670CrossRefGoogle Scholar
  24. 24.
    Shi Y, Wang J, Wang C, Zhai TT, Bao WJ, Xu JJ, Xia XH, Chen HY (2015) Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J Am Chem Soc 137:7365–7370CrossRefGoogle Scholar
  25. 25.
    Yan K, Wang R, Zhang JD (2014) A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens Bioelectron 53:301–304CrossRefGoogle Scholar
  26. 26.
    Shen QM, Han L, Fan GC, Abdel-Halim ES, Jiang LP, Zhu JJ (2015) Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy. Biosens Bioelectron 64:449–455CrossRefGoogle Scholar
  27. 27.
    Qiu ZL, Shu J, Jin GX, Xu MD, Wei QH, Chen GN, Tang DP (2016) Invertase-labeling gold-dendrimer for in situ amplified detection mercury (II) with glucometer readout and thymine–Hg2+–thymine coordination chemistry. Biosens Bioelectron 77:681–686CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Ma HM, Wu D, Li Y, Du B, Wei Q (2015) Label-free immunosensor based on Au@Ag2S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine. J Electroanal Chem 741:14–19CrossRefGoogle Scholar
  29. 29.
    Chou SS, De M, Kim J, Byun S, Dykstra C, Yu J, Huang JX, Dravid VP (2013) Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc 135:4584–4587CrossRefGoogle Scholar
  30. 30.
    Zheng YN, Liang WB, Yuan YL, Xiong CY, Xie SB, Wang HJ, Chai YQ, Yuan R (2016) Wavelength-resolved simultaneous photoelectrochemical bifunctional sensor on single interface: a newly in vitro approach for multiplexed DNA monitoring in cancer cells. Biosens Bioelectron 81:423–430CrossRefGoogle Scholar
  31. 31.
    Wang XX, Nan FX, Zhao JL, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391CrossRefGoogle Scholar
  32. 32.
    Qiu ZL, Tang DY, Shu J, Chen GN, Tang DP (2016) Enzyme-triggered formation of enzyme-tyramine concatamers on nanogold-functionalized dendrimer for impedimetric detection of Hg(II) with sensitivity enhancement. Biosens Bioelectron 75:108–115CrossRefGoogle Scholar
  33. 33.
    Liu L, Xia N, Liu HP, Kang XJ, Liu XS, Xue C, He XL (2014) Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron 53:399–405CrossRefGoogle Scholar
  34. 34.
    Zeng GM, Zhang C, Huang DL, Lai C, Tang L, Zhou YY, Xu P, Wang H, Qin L, Cheng M (2016) Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+-thymine base pairs for Hg2+ detection. Biosens Bioelectron. doi: 10.1016/j.bios.2016.10.018 Google Scholar
  35. 35.
    Wang N, Lin M, Dai HX, Ma HY (2016) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens Bioelectron 79:320–326CrossRefGoogle Scholar
  36. 36.
    Zhang J, Tang Y, Lv J, Fang SQ, Tang DP (2015) Glucometer-based quantitative determination of Hg(II) using gold particle encapsulated invertase and strong thymine-Hg(II)-thymine interaction for signal amplification. Microchim Acta 182:1153–1159CrossRefGoogle Scholar
  37. 37.
    Abdelhamid HN, Wu HF (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609–1617CrossRefGoogle Scholar
  38. 38.
    Zhang JR, Huang WT, Zeng AL, Luo HQ, Li NB (2015) Ethynyl and pi-stacked thymine-Hg2+-thymine base pairs enhanced fluorescence quenching via photoinduced electron transfer and simple and sensitive mercury ion sensing. Biosens Bioelectron 64:597–604CrossRefGoogle Scholar
  39. 39.
    Huang PJ, van Ballegooie C, Liu J (2016) Hg2+ detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA. Analyst 141:3788–3793CrossRefGoogle Scholar
  40. 40.
    Ma X, Sheng ZH, Jiang L (2014) Sensitive naked-eye detection of Hg2+ based on the aggregation and filtration of thymine functionalized vesicles caused by selective interaction between thymine and Hg2+. Analyst 139:3365–3368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of JinanJinanPeople’s Republic of China
  2. 2.J. Craig Venter InstituteRockvilleUSA

Personalised recommendations