Skip to main content
Log in

Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanocomposite prepared from reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) is used in an electrochemical aptasensor for the sensitive and selective determination of the antibiotic chloramphenicol (CAP). The nanocomposite was obtained by electrostatic assembly of AgNPs on the surface of polyelectrolyte-functionalized rGO and then used to modify a glassy carbon electrode. The biosensor is then obtained by immobilizing the aptamer against CAP. When incubated with solutions of CAP, the sensor surface is loaded with CAP due to aptamer recognition. The captured CAP can be electrochemically reduced to yield a current that is strongly enhanced as a result of the excellent electrocatalysis property of the graphene/AgNP-nanocomposite. Under optimum conditions, the calibration plot is linear in the 0.01 to 35 μM concentration range, with a 2 nM detection limit (at 3σ). The sensor is reproducible, stable, selective over homologous interferents, and performs excellently when analyzing CAP in milk samples.

A graphene/silver nanoparticle-based electrochemical aptasensor is designed for the selective determination of the antibiotic chloramphenicol (CAP). The excellent electrocatalytic reduction of CAP specifically captured onto the electrode surface enables the sensitive electrochemical signal transduction of the biosensor by linear sweep voltammetry (LSV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, Wael KD (2012) Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem 84:6753–6758

    Article  CAS  Google Scholar 

  2. Alizadeh T, Ganjali MR, Zare M, Norouzi P (2012) Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem 130:1108–1114

    Article  CAS  Google Scholar 

  3. Gao H, Pan D, Gan N, Cao J, Sun Y, Wu Z, Zeng X (2015) An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Microchim Acta 182:2551–2559

    Article  CAS  Google Scholar 

  4. Ardsoongnearn C, Boonbanlu O, Kittijaruwattana S, Suntornsuk L (2014) Liquid chromatography and ion trap mass spectrometry for simultaneous and multiclass analysis of antimicrobial residues in feed water. J Chromatogr B 945–946:31–38

    Article  Google Scholar 

  5. Soheili V, Taghdisi SM, Khayyat MH, Bazzaz BSF, Ramezani M, Abnous K (2016) Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchim Acta 183:1687–1697

    Article  CAS  Google Scholar 

  6. Iranifam M, Kharameh MK (2015) Cupric oxide nanoparticles-enhanced chemiluminescence method for measurement of β-lactam antibiotics. Luminescence 30:625–630

    Article  CAS  Google Scholar 

  7. Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, Wael KD (2016) (Electro)sensing of phenicol antibiotics-a review. Crit Rev Food Sci 56:2416–2429

    Article  CAS  Google Scholar 

  8. Ojani R, Raoof JB, Zamani S (2012) A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode. Bioelectrochemistry 85:44–49

    Article  CAS  Google Scholar 

  9. Zhang L, Duan XM, Wen YP, Xu JK, Yao YY, Lu Y, Lu LM, Zhang O (2012) Electrochemical behaviors of roxithromycin at poly(3,4-ethylenedioxythiophene) modified gold electrode and its electrochemical determination. Electrochim Acta 72:179–185

    Article  CAS  Google Scholar 

  10. Zhai HY, Liang ZX, Chen ZG, Wang HH, Liu ZP, Su ZH, Zhou Q (2015) Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta 171:105–113

    Article  CAS  Google Scholar 

  11. Fayazfar H, Afshar A, Dolati A (2014) Tantalum electrodes modified with well-aligned carbon nanotube–Au nanoparticles: Application to the highly sensitive electrochemical determination of cefazolin. Appl Biochem Biotechnol 173:1511–1528

    Article  CAS  Google Scholar 

  12. Tu WW, Lei JP, Ding L, Ju HX (2009) Sandwich nanohybrid of single-walled carbon nanohorns–TiO2–porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun 4227–4229

  13. Zhang KX, Lu LM, Wen YP, Xu JK, Duan XM, Zhang L, Hu DF, Nie T (2013) Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal Chim Acta 787:50–56

    Article  CAS  Google Scholar 

  14. Wang LS, Lei JP, Ma RN, Ju HX (2013) Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal Chem 85:6505–6510

    Article  CAS  Google Scholar 

  15. Conzuelo F, Campuzano S, Gamella M, Pinacho DG, Reviejo AJ, Marco MP, Pingarrón JM (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens Bioelectron 50:100–105

    Article  CAS  Google Scholar 

  16. He ZY, Zang S, Liu YJ, He Y, Lei HT (2015) A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens Bioelectron 73:85–92

    Article  CAS  Google Scholar 

  17. Meng HM, Liu H, Kuai HL, Peng RZ, Mo LT, Zhang XB (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45:2583–2602

    Article  CAS  Google Scholar 

  18. Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Article  Google Scholar 

  19. Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182:2567–2575

    Article  CAS  Google Scholar 

  20. Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical aptasensor of Cardiac Troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875

    Article  CAS  Google Scholar 

  21. Alvarez-Martos I, Ferapontova EE (2016) Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal Chem 88:3608–3616

    Article  CAS  Google Scholar 

  22. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  23. Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976

    Article  CAS  Google Scholar 

  24. Qiu ZP, Yu J, Yan P, Wang ZJ, Wan QJ, Yang NJ (2016) Electrochemical grafting of graphene nano platelets with aryl diazonium salts. ACS Appl Mater Interfaces 8:28291–28298

    Article  CAS  Google Scholar 

  25. Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2:64–98

    Article  CAS  Google Scholar 

  26. Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504

    Article  CAS  Google Scholar 

  27. Wan QJ, Liu Y, Wang ZH, Wei W, Li BB, Zou J, Yang NJ (2013) Graphene nanoplatelets supported metal nanoparticles for electrochemical oxidation of hydrazine. Electrochem Commun 29:29–32

    Article  CAS  Google Scholar 

  28. Jiang D, Du XJ, Liu Q, Zhou L, Dai LM, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–6411

    Article  CAS  Google Scholar 

  29. Liu KP, Zhang JJ, Wang CM, Zhu JJ (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens Bioelectron 26:3627–3632

    Article  CAS  Google Scholar 

  30. Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  31. Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A (2016) Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci 475:46–56

    Article  CAS  Google Scholar 

  32. Wan QJ, Wang XW, Yu F, Wang XX, Yang NJ (2009) Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J Appl Electrochem 39:1145–1151

    Article  CAS  Google Scholar 

  33. Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S (2010) Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta 169:345–351

    Article  CAS  Google Scholar 

  34. Borowiec J, Wang R, Zhu LH, Zhang JD (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144

    Article  CAS  Google Scholar 

  35. Yang RR, Zhao JL, Chen MJ, Yang T, Luo SZ, Jiao K (2015) Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 131:619–623

    Article  CAS  Google Scholar 

  36. Bai X, Qin CD, Huang X (2016) Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Microchim Acta 183:2973–2981

    Article  CAS  Google Scholar 

  37. Chen M, Gan N, Zhang HR, Yan ZD, Li TH, Chen YJ, Xu Q, Jiang QL (2016) Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim Acta 183:1099–1106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21475033), Natural Science Foundation of Hubei Province of China (2014CFB279), Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (2015–49), and Science Foundation for Creative Research Group of HBNU (T201501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosong Lai or Aimin Yu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lai, G., Zhang, H. et al. Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles. Microchim Acta 184, 1445–1451 (2017). https://doi.org/10.1007/s00604-017-2138-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2138-y

Keywords

Navigation