Advertisement

Microchimica Acta

, Volume 184, Issue 5, pp 1445–1451 | Cite as

Amperometric aptasensing of chloramphenicol at a glassy carbon electrode modified with a nanocomposite consisting of graphene and silver nanoparticles

  • Shun Liu
  • Guosong Lai
  • Haili Zhang
  • Aimin Yu
Original Paper

Abstract

A nanocomposite prepared from reduced graphene oxide (rGO) and silver nanoparticles (AgNPs) is used in an electrochemical aptasensor for the sensitive and selective determination of the antibiotic chloramphenicol (CAP). The nanocomposite was obtained by electrostatic assembly of AgNPs on the surface of polyelectrolyte-functionalized rGO and then used to modify a glassy carbon electrode. The biosensor is then obtained by immobilizing the aptamer against CAP. When incubated with solutions of CAP, the sensor surface is loaded with CAP due to aptamer recognition. The captured CAP can be electrochemically reduced to yield a current that is strongly enhanced as a result of the excellent electrocatalysis property of the graphene/AgNP-nanocomposite. Under optimum conditions, the calibration plot is linear in the 0.01 to 35 μM concentration range, with a 2 nM detection limit (at 3σ). The sensor is reproducible, stable, selective over homologous interferents, and performs excellently when analyzing CAP in milk samples.

Graphical Abstract

A graphene/silver nanoparticle-based electrochemical aptasensor is designed for the selective determination of the antibiotic chloramphenicol (CAP). The excellent electrocatalytic reduction of CAP specifically captured onto the electrode surface enables the sensitive electrochemical signal transduction of the biosensor by linear sweep voltammetry (LSV).

Keywords

Aptasensor Antibiotics Electrocatalysis Linear sweep voltammetry Milk analysis 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21475033), Natural Science Foundation of Hubei Province of China (2014CFB279), Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China (2015–49), and Science Foundation for Creative Research Group of HBNU (T201501).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2138_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1227 kb)

References

  1. 1.
    Pilehvar S, Mehta J, Dardenne F, Robbens J, Blust R, Wael KD (2012) Aptasensing of chloramphenicol in the presence of its analogues: reaching the maximum residue limit. Anal Chem 84:6753–6758CrossRefGoogle Scholar
  2. 2.
    Alizadeh T, Ganjali MR, Zare M, Norouzi P (2012) Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem 130:1108–1114CrossRefGoogle Scholar
  3. 3.
    Gao H, Pan D, Gan N, Cao J, Sun Y, Wu Z, Zeng X (2015) An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Microchim Acta 182:2551–2559CrossRefGoogle Scholar
  4. 4.
    Ardsoongnearn C, Boonbanlu O, Kittijaruwattana S, Suntornsuk L (2014) Liquid chromatography and ion trap mass spectrometry for simultaneous and multiclass analysis of antimicrobial residues in feed water. J Chromatogr B 945–946:31–38CrossRefGoogle Scholar
  5. 5.
    Soheili V, Taghdisi SM, Khayyat MH, Bazzaz BSF, Ramezani M, Abnous K (2016) Colorimetric and ratiometric aggregation assay for streptomycin using gold nanoparticles and a new and highly specific aptamer. Microchim Acta 183:1687–1697CrossRefGoogle Scholar
  6. 6.
    Iranifam M, Kharameh MK (2015) Cupric oxide nanoparticles-enhanced chemiluminescence method for measurement of β-lactam antibiotics. Luminescence 30:625–630CrossRefGoogle Scholar
  7. 7.
    Pilehvar S, Gielkens K, Trashin SA, Dardenne F, Blust R, Wael KD (2016) (Electro)sensing of phenicol antibiotics-a review. Crit Rev Food Sci 56:2416–2429CrossRefGoogle Scholar
  8. 8.
    Ojani R, Raoof JB, Zamani S (2012) A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode. Bioelectrochemistry 85:44–49CrossRefGoogle Scholar
  9. 9.
    Zhang L, Duan XM, Wen YP, Xu JK, Yao YY, Lu Y, Lu LM, Zhang O (2012) Electrochemical behaviors of roxithromycin at poly(3,4-ethylenedioxythiophene) modified gold electrode and its electrochemical determination. Electrochim Acta 72:179–185CrossRefGoogle Scholar
  10. 10.
    Zhai HY, Liang ZX, Chen ZG, Wang HH, Liu ZP, Su ZH, Zhou Q (2015) Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta 171:105–113CrossRefGoogle Scholar
  11. 11.
    Fayazfar H, Afshar A, Dolati A (2014) Tantalum electrodes modified with well-aligned carbon nanotube–Au nanoparticles: Application to the highly sensitive electrochemical determination of cefazolin. Appl Biochem Biotechnol 173:1511–1528CrossRefGoogle Scholar
  12. 12.
    Tu WW, Lei JP, Ding L, Ju HX (2009) Sandwich nanohybrid of single-walled carbon nanohorns–TiO2–porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem Commun 4227–4229Google Scholar
  13. 13.
    Zhang KX, Lu LM, Wen YP, Xu JK, Duan XM, Zhang L, Hu DF, Nie T (2013) Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal Chim Acta 787:50–56CrossRefGoogle Scholar
  14. 14.
    Wang LS, Lei JP, Ma RN, Ju HX (2013) Host–guest interaction of adamantine with a β-cyclodextrin-functionalized AuPd bimetallic nanoprobe for ultrasensitive electrochemical immunoassay of small molecules. Anal Chem 85:6505–6510CrossRefGoogle Scholar
  15. 15.
    Conzuelo F, Campuzano S, Gamella M, Pinacho DG, Reviejo AJ, Marco MP, Pingarrón JM (2013) Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens Bioelectron 50:100–105CrossRefGoogle Scholar
  16. 16.
    He ZY, Zang S, Liu YJ, He Y, Lei HT (2015) A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens Bioelectron 73:85–92CrossRefGoogle Scholar
  17. 17.
    Meng HM, Liu H, Kuai HL, Peng RZ, Mo LT, Zhang XB (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45:2583–2602CrossRefGoogle Scholar
  18. 18.
    Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19CrossRefGoogle Scholar
  19. 19.
    Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182:2567–2575CrossRefGoogle Scholar
  20. 20.
    Jo H, Gu H, Jeon W, Youn H, Her J, Kim SK, Lee J, Shin JH, Ban C (2015) Electrochemical aptasensor of Cardiac Troponin I for the early diagnosis of acute myocardial infarction. Anal Chem 87:9869–9875CrossRefGoogle Scholar
  21. 21.
    Alvarez-Martos I, Ferapontova EE (2016) Electrochemical label-free aptasensor for specific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal Chem 88:3608–3616CrossRefGoogle Scholar
  22. 22.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924CrossRefGoogle Scholar
  23. 23.
    Brownson DAC, Kampouris DK, Banks CE (2012) Graphene electrochemistry: fundamental concepts through to prominent applications. Chem Soc Rev 41:6944–6976CrossRefGoogle Scholar
  24. 24.
    Qiu ZP, Yu J, Yan P, Wang ZJ, Wan QJ, Yang NJ (2016) Electrochemical grafting of graphene nano platelets with aryl diazonium salts. ACS Appl Mater Interfaces 8:28291–28298CrossRefGoogle Scholar
  25. 25.
    Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2:64–98CrossRefGoogle Scholar
  26. 26.
    Lu LM, Li HB, Qu F, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioelectron 26:3500–3504CrossRefGoogle Scholar
  27. 27.
    Wan QJ, Liu Y, Wang ZH, Wei W, Li BB, Zou J, Yang NJ (2013) Graphene nanoplatelets supported metal nanoparticles for electrochemical oxidation of hydrazine. Electrochem Commun 29:29–32CrossRefGoogle Scholar
  28. 28.
    Jiang D, Du XJ, Liu Q, Zhou L, Dai LM, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–6411CrossRefGoogle Scholar
  29. 29.
    Liu KP, Zhang JJ, Wang CM, Zhu JJ (2011) Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor. Biosens Bioelectron 26:3627–3632CrossRefGoogle Scholar
  30. 30.
    Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055CrossRefGoogle Scholar
  31. 31.
    Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A (2016) Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci 475:46–56CrossRefGoogle Scholar
  32. 32.
    Wan QJ, Wang XW, Yu F, Wang XX, Yang NJ (2009) Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J Appl Electrochem 39:1145–1151CrossRefGoogle Scholar
  33. 33.
    Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S (2010) Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta 169:345–351CrossRefGoogle Scholar
  34. 34.
    Borowiec J, Wang R, Zhu LH, Zhang JD (2013) Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta 99:138–144CrossRefGoogle Scholar
  35. 35.
    Yang RR, Zhao JL, Chen MJ, Yang T, Luo SZ, Jiao K (2015) Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 131:619–623CrossRefGoogle Scholar
  36. 36.
    Bai X, Qin CD, Huang X (2016) Voltammetric determination of chloramphenicol using a carbon fiber microelectrode modified with Fe3O4 nanoparticles. Microchim Acta 183:2973–2981CrossRefGoogle Scholar
  37. 37.
    Chen M, Gan N, Zhang HR, Yan ZD, Li TH, Chen YJ, Xu Q, Jiang QL (2016) Electrochemical simultaneous assay of chloramphenicol and PCB72 using magnetic and aptamer-modified quantum dot-encoded dendritic nanotracers for signal amplification. Microchim Acta 183:1099–1106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Institute for Advanced Materials & Department of ChemistryHubei Normal UniversityHuangshiPeople’s Republic of China
  2. 2.Department of Chemistry and Biotechnology, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations